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Big Picture
● Go from: ● To:

Credit Sloan Digital Sky Survey and its 
Baryon Oscillation Spectroscopic Survey

Likelihood 
function: 
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Problems
1) Expensive evaluations of the likelihood (advance 
modeling).

2) Expensive posterior inferences. Very long chains to 
achieve convergence, high dimensionality.

3) Noisy evaluations. Cosmic variance from simulations, 
uncertainties in the group finder or in the gravity solver.  

Complicated loop 
evaluations, high-n 
integrals in PT, modeling 
observational effects

Direct N-body simulations

Traditional 
MCMC not 
adequate  
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1) Include theory error



  

2) Reconstruction (regression) of the 
likelihood: Gaussian Process 
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Noise on the likelihood function: 
toy model and Gaussian Process

Pellejero-Ibanez, Arico, et al. (in 
prep.)
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Problems
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Minimal amount of likelihood 

function evaluations to recover 

the true one?



  

2) Reconstruction (regression) of the 
likelihood: Gaussian Process 



  

Iterative process with Bayesian 
Optimization of Gaussian Process

Pellejero-Ibanez, Arico, et al. (in 
prep.)
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In higher dimensions: clustering

Pellejero-Ibanez, Arico, et al. (in 
prep.)

Black: MCMC constraints 
(24000 likelihood 
compuations)

Red: Iterative constraints 
(437 likelihood 
computations)



  

Summary
● Noisy likelihood: Include theory errors and use 

Gaussian Process to recover “true” results.
● Use iterative Bayesian Optimization process to get 

minimal computations of the likelihood function. 

¡Muchas gracias!



  

Appendix: Combining ideas
No noise 10% noise 50% noise

Pellejero-Ibanez, Arico, et al. (in 
prep.)



  

Appendix: MCMC performance



  

Appendix: Iterative process with 
Bayesian Optimization of Gaussian 

Process

Pellejero-Ibanez, Arico, et al. (in 
prep.)

Convergence criteria
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