Non-comoving cosmology

Héctor Villarrubia Rojo

(with J. A. R. Cembranos, A. L. Maroto)

Universidad Complutense de Madrid and IPARCOS

VII Meeting on Fundamental Cosmology 2019, Madrid

Observations

Homogeneity and isotropy

Multiple probes:

- Cosmic microwave background
- Galaxy number counts
- Expansion history

Some anomalies (?):

- Large-scale bulk flows
- CMB dipolar anomaly
- Radio dipole

[Schwarz et al. CQG 2016] [Buchert et al. IJMPD 2016]

Mathematical embodiment

Homogeneity
$$\rightarrow$$
 RW metric
Isotropy $ds^2 = a^2(\tau) \left(-d\tau^2 + dx^2\right)$

From Einstein equations $(G^{\mu}_{\ \nu} = 8\pi G T^{\mu}_{\ \nu})$

$$\begin{array}{cccc} G^0{}_i = 0 & \rightarrow & T^0{}_i = 0 \\ G^i{}_j \propto \delta^i{}_j & \rightarrow & T^i{}_j = 0 \;, & i \neq j \end{array}$$

$$T^{\mu}_{\ \nu} = (\rho + P)u^{\mu}u_{\nu} + \delta^{\mu}_{\ \nu}P$$

Single fluid (
$$\gamma \equiv (1-eta^2)^{-1/2}$$
)

$$T^{0}_{\ i} = (\rho + P)\gamma^{2}\beta_{i} = 0$$
$$T^{i}_{\ j} = P\delta^{i}_{\ j} + (\rho + P)\gamma^{2}\beta^{i}\beta_{j}$$

$$T^{\mu}_{\ \nu} = (\rho + P)u^{\mu}u_{\nu} + \delta^{\mu}_{\ \nu}P$$

Single fluid ($\gamma \equiv (1-\beta^2)^{-1/2})$

$$T^{0}_{\ i} = (\rho + P)\gamma^{2}\beta_{i} = 0$$
$$T^{i}_{\ j} = P\delta^{i}_{\ j} + (\rho + P)\gamma^{2}\beta^{i}\beta_{j}$$

Multicomponent ($\beta \ll 1$)

$$T^{0}_{\ i} \simeq \sum_{s} (\rho + P) \beta_{s i} = 0$$
$$T^{i}_{\ j} \simeq \sum_{s} P_{s} \delta^{i}_{\ j}$$

$$T^{\mu}_{\ \nu} = (\rho + P)u^{\mu}u_{\nu} + \delta^{\mu}_{\ \nu}P$$

$$\begin{aligned} \text{Single fluid } &(\gamma \equiv (1 - \beta^2)^{-1/2}) & \text{Multicomponent } (\beta \ll 1) \\ &T^0_{\ i} = (\rho + P)\gamma^2\beta_i = 0 & T^0_{\ i} \simeq \sum_s (\rho + P)\beta_{s\,i} = 0 \\ &T^i_{\ j} = P\delta^i_{\ j} + (\rho + P)\gamma^2\beta^i\beta_j & T^i_{\ j} \simeq \sum_s P_s\delta^i_{\ j} \end{aligned}$$

• Λ CDM assumes $\beta_s = 0 \quad \forall s$ (i.e. for every component)

$$T^{\mu}_{\ \nu} = (\rho + P)u^{\mu}u_{\nu} + \delta^{\mu}_{\ \nu}P$$

$$\begin{split} \text{Single fluid } &(\gamma \equiv (1 - \beta^2)^{-1/2}) & \text{Multicomponent } (\beta \ll 1) \\ & T^0_{\ i} = (\rho + P) \gamma^2 \beta_i = 0 & T^0_{\ i} \simeq \sum_s (\rho + P) \beta_{s \, i} = 0 \\ & T^i_{\ j} = P \delta^i_{\ j} + (\rho + P) \gamma^2 \beta^i \beta_j & T^i_{\ j} \simeq \sum_s P_s \delta^i_{\ j} \end{split}$$

• Λ CDM assumes $\beta_s = 0 \quad \forall s$ (i.e. for every component)

- Background isotropy requires $\sum_s (\rho_s + P_s) {\pmb \beta}_s = 0 \ , \quad (\beta_s \ll 1)$

Standard lore

$$T_{\mu\nu} = \underbrace{T_{\mu\nu}^{(\gamma)} + T_{\mu\nu}^{(b)} + T_{\mu\nu}^{(\nu)}}_{\mu\nu}$$

Visible sector

- Non-gravitational interactions
- Essentially decoupled at late times
- Tightly coupled in the early Universe

$$\underbrace{T^{(\Lambda)}_{\mu\nu}+T^{(\rm CDM)}_{\mu\nu}+\dots}_{\mu\nu}$$

+

Dark sector

- Only observed gravitationally
- Λ and CDM behaviour at late times
- Early Universe behaviour?

Non-comoving cosmology

The background is homogeneous and isotropic (FLRW) in the CM frame.

Kinetic theory

Two frames

$$\left\{ \begin{array}{ll} \mathcal{O}(\boldsymbol{p}) & \rightarrow & \mathsf{CM} \text{ frame} \\ \\ \tilde{\mathcal{O}}(\boldsymbol{\tilde{p}}) & \rightarrow & \mathsf{Fluid} \text{ rest frame} \end{array} \right. \left(\tilde{p}^{\mu} = \Lambda^{\mu}_{\ \nu}(\beta) p^{\nu} \right)$$

The background distribution function satisfies

$$f_0(\boldsymbol{p}) = \tilde{f}_0(\tilde{p})$$

e.g. for photons $\ \rightarrow \$ boosted blackbody spectrum in the CM frame

$$\tilde{f}_0(\tilde{p}) = \frac{1}{\mathrm{e}^{\tilde{p}/\tilde{T}} - 1} = \frac{1}{\mathrm{e}^{p/T(\boldsymbol{p})} - 1} = f_0(\boldsymbol{p}) , \qquad T(\boldsymbol{p}) = \gamma \left(1 - \frac{\boldsymbol{p} \cdot \boldsymbol{\beta}}{p}\right) \tilde{T}$$

Isotropic in the fluid rest frame

Dipolar modulation in the CM frame

Bulk velocities

Collisionless species: Neutrinos and CDM

$$egin{array}{lll} \dot{eta}_
u = 0 &
ightarrow & eta_
u \propto {\sf const.} \ , & ({\sf Radiation}) \ \dot{eta}_c = -{\cal H}eta_c &
ightarrow & eta_c \propto a^{-1} \ , & ({\sf Matter}) \end{array}$$

Bulk velocities

Collisionless species: Neutrinos and CDM

$$egin{array}{lll} \dot{eta}_
u = 0 &
ightarrow & eta_
u \propto {\sf const.} \ , & ({\sf Radiation}) \ \dot{eta}_c = -{\cal H}eta_c &
ightarrow & eta_c \propto a^{-1} \ , & ({\sf Matter}) \end{array}$$

Coupled species: Photon-baryon plasma

$$\dot{oldsymbol{\beta}}_{\gamma} = 0 - \frac{1}{ au_c} (eta_{\gamma} - eta_b) , \qquad au_c \equiv a n_e \sigma_T$$

 $\dot{oldsymbol{\beta}}_b = -\mathcal{H} eta_b + \frac{1}{R au_c} (eta_{\gamma} - eta_b) , \qquad R \equiv \frac{3
ho_b}{4
ho_{\gamma}}$

Bulk velocities

Collisionless species: Neutrinos and CDM

$$egin{array}{lll} \dot{eta}_
u = 0 &
ightarrow & eta_
u \propto {\sf const.} \ , & ({\sf Radiation}) \ \dot{eta}_c = -{\cal H}eta_c &
ightarrow & eta_c \propto a^{-1} \ , & ({\sf Matter}) \end{array}$$

Coupled species: Photon-baryon plasma

$$\dot{\boldsymbol{\beta}}_{\gamma} = 0 - \frac{1}{\tau_c} (\boldsymbol{\beta}_{\gamma} - \boldsymbol{\beta}_b) , \qquad \tau_c \equiv a n_e \sigma_T$$

 $\dot{\boldsymbol{\beta}}_b = -\mathcal{H} \boldsymbol{\beta}_b + \frac{1}{R \tau_c} (\boldsymbol{\beta}_{\gamma} - \boldsymbol{\beta}_b) , \qquad R \equiv \frac{3 \rho_b}{4 \rho_{\gamma}}$

Tight-coupling ($\tau_c \ll 1$)

$$\boldsymbol{\beta}_{\gamma} = \boldsymbol{\beta}_{b} + \mathcal{O}(\tau_{c}) = \frac{\boldsymbol{\beta}_{0}}{1+R} + \mathcal{O}(\tau_{c})$$

Bulk velocities (II)

- 1 Visible sector is tightly coupled with velocity β_0
- 2 Photon-baryon plasma evolves as $\beta_{\gamma b} = \beta_0 \left(1 + \frac{3\Omega_b a}{4\Omega_{\gamma}}\right)^{-1}$

Bulk velocity constraints (kSZ from Planck '13)

 $\beta_0 < 1.6 \times 10^{-3} \ (95\% \ {\rm CL})$

Perturbations

FLRW background is preserved, what about perturbations?

Perturbations

FLRW background is preserved, what about perturbations?

But there are new signatures...

Effects on LSS

Any perturbation can be splitted

$$\delta(\tau, \boldsymbol{k}) = \underbrace{\delta^{R}(\tau, k)}_{\Lambda \text{CDM}} + \underbrace{\mathrm{i}(\hat{\beta} \cdot \hat{k})\delta^{I}(\tau, k)}_{\text{New }\mathcal{O}(\beta)}$$

We recover $\Lambda {\rm CDM}$ results for $\langle \delta \delta \rangle$

$$|\delta(\tau, \boldsymbol{k})|^2 = |\delta^R(\tau, \boldsymbol{k})|^2 + \mathcal{O}(\beta^2)$$

But we have new effects for cross-correlations $\langle \delta \theta \rangle$

 $\delta\theta^* = \delta^R \theta^{R\,*} + \mathrm{i}(\hat{\beta} \cdot \hat{k}) \left(\delta^I \theta^{R\,*} - \delta^R \theta^{I\,*} \right) + \mathcal{O}\left(\beta^2\right)$

Effects on CMB

CMB temperature anisotropy observed from the solar frame

 ΛCDM result

$$egin{aligned} d_{\mathsf{kin}} &= eta_{\mathsf{CMB}}^{\odot} \ d_{\mathsf{mod}} &= eta_{\mathsf{CMB}}^{\odot} \ d_{\mathsf{a}} &= eta_{\mathsf{CMB}}^{\odot} \end{aligned}$$

Effects on CMB

CMB temperature anisotropy observed from the solar frame

 ΛCDM result + New contributions

$$egin{aligned} d_{\mathsf{kin}} &= eta_{\mathsf{CMB}}^{\odot} \ d_{\mathsf{mod}} &= eta_{\mathsf{CMB}}^{\odot} - 4oldsymbol{eta} \ d_{\mathsf{a}} &= eta_{\mathsf{CMB}}^{\odot} - oldsymbol{eta} \end{aligned}$$

Bonus: Magnetic fields and vorticity

Summary

- We have extended Λ CDM with **one** additional parameter β_0 to accomodate a non-comoving dark sector.
- The background evolution is not modified (FLRW).
- The initial velocity of the visible sector in the CM frame is constrained

 $\beta_0 < 1.6 \times 10^{-3} \ (95\% \ \text{CL})$

- The matter and temperature power spectra are not modified.
- New signatures appear as deviations from statistical isotropy.
- The new coupling between scalar and vector modes leads to production of vorticity and magnetic fields.

Reference

Non-comoving Cosmology JCAP 06 (2019) 041, arXiv:1903.11009 J.A.R. Cembranos, A.L. Maroto, HVR.

Backup: Perfect fluids with bulk velocities

Assuming $w \neq -1$

D // /

$$\begin{split} \dot{\rho} &= \frac{(v^2 - 3)(1 + w)}{1 - wv^2} \mathcal{H}\rho + \frac{\dot{w}}{1 - wv^2} v^2 \rho \\ \dot{v} &= \frac{(1 - v^2)(3w - 1)}{1 - wv^2} \mathcal{H}v + \frac{\dot{w}}{1 + w} \frac{1 - v^2}{1 - wv^2} v \end{split}$$

Radiation,
$$w = 1/3$$

 $\rho = \rho_0 a^{-4}$
 $v = v_0 = \text{const.}$

Matter, w = 0

$$\begin{split} \rho &= \frac{\rho_0}{a^2 \sqrt{v_0^2 + a^2(1-v_0^2)}} \\ v &= \frac{v_0}{\sqrt{v_0^2 + a^2(1-v_0^2)}} \\ \gamma^2 \rho &= \frac{\rho_0}{a^4(1-v_0^2)} \sqrt{v_0^2 + a^2(1-v_0^2)} \end{split}$$

Backup: Perfect fluids with bulk velocities

Analytic expressions for a generic equation of state w(a) can be obtained in the regime of small velocities

$$\rho = \rho_0 \exp\left(-3\int \frac{\mathrm{d}a}{a}\left(1+w\right)\right) + \mathcal{O}(v^2)$$
$$v = \frac{v_0(1+w_0)}{a^4(1+w)} \exp\left(3\int \frac{\mathrm{d}a}{a}\left(1+w\right)\right) + \mathcal{O}(v^2)$$

For the particular case w = const.,

$$\rho = \rho_0 a^{-3(1+w)} + \mathcal{O}(v^2)$$
$$v = v_0 a^{-(1-3w)} + \mathcal{O}(v^2)$$

Backup: Dark sector behaviour

Center of mass condition

$$\sum_{s} T_{s\ 0}^{\ i} = 0 \quad \to \quad T_{DS\ i}^{\ 0} = -\sum_{s=\gamma,b,\nu} T_{s\ i}^{\ 0}$$

The evolution of the total energy-momentum tensor is described by

$$\dot{\delta} + 3\mathcal{H}(c_{s}^{2} - w)\delta + (1 + w)\theta - (1 + w)\left(3\dot{\phi} - k^{2}(B - \dot{E})\right) = 0$$
$$\dot{\theta} + (1 - 3w)\mathcal{H}\theta + \frac{\dot{w}}{1 + w}\theta - \frac{k^{2}}{1 + w}c_{s}^{2}\delta + \frac{4k^{2}}{3(1 + w)}\sigma - k^{2}\psi = 0$$

we assume

- The dark sector is subdominant with respect to neutrinos and photons at early times, i.e. before the matter-domination era.
- There is a transition to a CDM behaviour at late times.