Higher order Hamiltonian Monte Carlo Sampling for Cosmological Large Scale Structure Analysis

Mónica Hernández Sánchez

Universidad de La Laguna Advisor: Francisco-Shu Kitaura

Collaborators: Metin Ata Sergio Rodríguez Torres Claudio Dalla Vecchia

VII MEETING ON FUNDAMENTAL COSMOLOGY Madrid 9/09/19

CONTENTS

- 1. Introduction
 - 1.1. Motivation and Objectives
 - 1.2. The BIRTH code
- 2. Bayesian Statistics
 - 2.1. Hamiltonian Monte Carlo sampling
- 3. Fourth order Leapfrog algorithm
 - 3.1. Study of the *i* parameter and the stepsize
 - 3.2. Convergence of the method
- 4. BIRTH Results
- 5. Conclusions

1. INTRODUCCION 1.1. Motivation and objectives

- Structures have been formed from the gravitational instability of primordial fluctuations, which are assumed to be closely Gaussian distributed; generating a process of collapse and originating the Cosmic Web (non-Gaussian).
- Galaxies are biased discrete tracers of the dark matter field.
- We aim at reconstructing the initial conditions of the Universe from Galaxy catalogues with a statistical Bayesian framework: Hamiltonian Monte Carlo sampling.
- We aim at improving the efficiency of the method through the implementation of a higher order discretization of the equations of motion: the **fourth order Leapfrog algorithm.**

Bayesian Inference for Reality vs THeory

- Bayesian inference algorithm to reconstruct the primordial evolved cosmic density field from galaxy surveys on the light-cone.
- General to any structure formation model.
- Self consistent treatment of the survey geometry and selection function.
- Non-linear Lagrangian bias.
- Redshift-space distortions modelling.

Gibbs sampling

Higher order Hamiltonian Monte Carlo sampling.

Kitaura et al. (Mónica Hernández-Sánchez) in preparation

1. INTRODUCCION 1.2. BIRTH Code

Nested Gibbs-Hamiltonian sampling

- In a first step we assume the data is in Lagrangian real-space at high redshift:
 - Power-law bias
 - Almost Poisson distribution of galaxies: Poissonian likelihood
 - Lognormal prior

 $\delta(q) \curvearrowleft \mathscr{P}(\delta(q)|\{q\},\{b\},\{R\})$

• In a second step: forward modelling to obtain S:

$$\{q\} \land \mathscr{P}(\{q\}|\{s^o\}, \delta(q), \mathcal{M})$$

• Likelihood comparison: $s \longleftrightarrow s^o$

1. INTRODUCCION 1.2. BIRTH Code

Nested Gibbs-Hamiltonian sampling

- In a first step we assume the data is in Lagrangian real-space at high redshift:
 - Power-law bias
 - Almost Poisson distribution of galaxies: Poissonian likelihood
 - Lognormal prior

 $\delta(q) \curvearrowleft \mathscr{P}(\delta(q)|\{q\},\{b\},\{R\})$

• In a second step: forward modelling to obtain S:

$$\{q\} \land \mathscr{P}(\{q\}|\{s^o\},\delta(q),\mathcal{M})$$

• Likelihood comparison: $s \longleftrightarrow s^o$

2. BAYESIAN STATISTICS 2.1. Hamiltonian Monte Carlo Sampling

$$\mathscr{H}(q,p) = U(q) + K(p) \qquad \qquad K(p) = \frac{1}{2}p^T M^{-1}p$$

 $q \longrightarrow$ variable we want to sample: primordial fluctuations

 $p \longrightarrow$ artificially introduced to evolve the system

We can write: $U(q) = -\ln \mathscr{P}(q)$

As we are interested on evolving the system with the momenta we use:

$$e^{-H} = e^{-K}e^{-U} \quad \begin{cases} e^{-K} = e^{-\frac{1}{2}p^{T}M^{-1}p} \\ e^{-U} = \mathscr{P}(q) \\ dq_{i} \end{cases}$$

We evolve the system solving the Hamilton's equations:

 $\begin{array}{lll} \displaystyle \frac{dq_i}{dt} & = & \displaystyle \frac{\partial H}{\partial p_i} = M^{-1}p_i \\ \displaystyle \frac{dp_i}{dt} & = & \displaystyle -\frac{\partial H}{\partial q_i} = \displaystyle -\frac{\partial U}{\partial q_i} \end{array}$

(Jasche & Kitaura, 2010)

2. BAYESIAN STATISTICS 2.1. Hamiltonian Monte Carlo Sampling

We discretize them with the Leapfrog algorithm:

$$p_i\left(\tau + \frac{\epsilon}{2}\right) = p_i(\tau) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_i}(q(\tau))$$

$$q_i(\tau + \epsilon) = q_i(\tau) + \epsilon \frac{p_i\left(\tau + \frac{\epsilon}{2}\right)}{m_i}$$

$$p_i(\tau + \epsilon) = p_i\left(\tau + \frac{\epsilon}{2}\right) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_i}(q(\tau + \epsilon))$$

We accept or reject the steps with the Metropolis-Hastings criterion

- Second order Leapfrog: $T_{\epsilon} = T_p(\epsilon/2)T_q(\epsilon)T_p(\epsilon/2)$
- Higher order Leapfrog: $T_{n+2}((2i-s)\epsilon) = T_n(\epsilon)^i T_n(-s\epsilon) T_n(\epsilon)^i$

$$s\epsilon = (2i)^{1/(n+1)}\epsilon$$

2. BAYESIAN STATISTICS 2.1. Hamiltonian Monte Carlo Sampling

We discretize them with the Leapfrog algorithm:

$$p_i\left(\tau + \frac{\epsilon}{2}\right) = p_i(\tau) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_i}(q(\tau))$$

$$q_i(\tau + \epsilon) = q_i(\tau) + \epsilon \frac{p_i\left(\tau + \frac{\epsilon}{2}\right)}{m_i}$$

$$p_i(\tau + \epsilon) = p_i\left(\tau + \frac{\epsilon}{2}\right) - \frac{\epsilon}{2} \frac{\partial U}{\partial q_i}(q(\tau + \epsilon))$$

We accept or reject the steps with the Metropolis-Hastings criterion

- Second order Leapfrog: $T_{\epsilon} = T_p(\epsilon/2)T_q(\epsilon)T_p(\epsilon/2)$
- Higher order Leapfrog: $T_{n+2}((2i-s)\epsilon) = T_n(\epsilon)^i T_n(-s\epsilon)T_n(\epsilon)^i$ Mónica Hernández-Sánchez (Kitaura) et al. in preparation $s\epsilon = (2i)^{1/(n+1)}\epsilon$

3. FOURTH ORDER LEAPFROG ALGORITHM 3. 1. Study of the *i* parameter and the stepsize

Stepsize	Iteration of	Convergence time	Acceptance			
	convergence					
	i=1					
E	650	108 29 min	95.0%			
26	250	45.53 min	70.2%			
<u>2</u> e	200	40,00 mm	10,270			
4ϵ	230	73,47 min	35,2%			
6ϵ	250	$110, 21 \ min$	23,8%			
8ϵ	260	$148, 32 \ min$	13,8%			
10ϵ	230	$189,09 \ min$	12,6%			
i=2						
e	68	$18,95\ min$	94,6%			
2ϵ	53	$23,85\ min$	64,2%			
4ϵ	46	$36,05\ min$	36,2%			
6ϵ	36	$50,06\ min$	23,4%			
8ϵ	46	$73, 40 \ min$	18,0%			
10ϵ	40	106,48 min	16,8%			
i=3						
e	32	19,05 min	88,4%			
2ϵ	29	25,54 min	51,6%			
4ϵ	20	25,97 min	27,4%			
6ϵ	24	43,54 min	17,0%			
8ϵ	25	$67, 26 \ min$	13,8%			
10ϵ	27	$67,27 \ min$	26,0%			

For the second order Leapfrog was found to be optimal a stepsize $\epsilon = 0.06$

3. FOURTH ORDER LEAPFROG ALGORITHM 3. 1. Study of the *i* parameter and the stepsize

		-		
Stepsize	Iteration of	Convergence time	Acceptance	
	convergence		-	
		i=1		
ϵ	650	$108, 29 \ min$	95,0%	
2ϵ	250	45,53 min	70,2%	
4ϵ	230	$73,47 \ min$	35,2%	
6ϵ	250	$110, 21 \ min$	23,8%	
8ϵ	260	$148, 32 \ min$	13,8%	
10ϵ	230	189,09 min	12,6%	
i=2				
ϵ	68	18,95 min	94,6%	
2ϵ	53	$23,85\ min$	64,2%	
4ϵ	46	$36,05\ min$	36,2%	
6ϵ	36	$50,06\ min$	23,4%	
8ϵ	46	$73, 40 \ min$	18,0%	
10ϵ	40	$106, 48 \ min$	16,8%	
i=3				
ϵ	32	$19,05\ min$	88,4%	
2ϵ	29	25,54 min	51,6%	
4ϵ	20	$25,97 \ min$	27,4%	
6ϵ	24	$43,54 \ min$	17,0%	
8ϵ	25	$67, 26 \ min$	13,8%	
10ϵ	27	$67,27\ min$	26,0%	
	$\begin{array}{c} \text{Stepsize} \\ \hline \epsilon \\ 2\epsilon \\ 4\epsilon \\ 6\epsilon \\ 8\epsilon \\ 10\epsilon \\ \hline \\ \epsilon \\ 2\epsilon \\ 4\epsilon \\ 6\epsilon \\ 8\epsilon \\ 10\epsilon \\ \hline \\ \epsilon \\ 2\epsilon \\ 4\epsilon \\ 6\epsilon \\ 8\epsilon \\ 10\epsilon \\ \hline \\ 8\epsilon \\ 10\epsilon \\ \hline \\ 8\epsilon \\ 10\epsilon \\ \hline \end{array}$	Stepsize Iteration of convergence ϵ 650 2ϵ 250 4ϵ 230 6ϵ 250 8ϵ 260 10ϵ 230 ϵ 68 2ϵ 53 4ϵ 46 6ϵ 36 8ϵ 46 10ϵ 40 ϵ 32 2ϵ 29 4ϵ 20 6ϵ 24 8ϵ 25 10ϵ 27	Stepsize Iteration of convergence Convergence time ϵ 650 108, 29 min 2ϵ 250 45, 53 min 4ϵ 230 73, 47 min 6ϵ 250 110, 21 min 8ϵ 260 148, 32 min 10ϵ 230 189, 09 min 10ϵ 230 189, 09 min ϵ 68 18, 95 min 2ϵ 53 23, 85 min 2ϵ 53 23, 85 min 4ϵ 46 36, 05 min 6ϵ 36 50, 06 min 8ϵ 46 73, 40 min 10ϵ 40 106, 48 min 12ϵ 29 25, 54 min 2ϵ 29 25, 97 min 6ϵ 24 43, 54 min 8ϵ 25 67, 26 min 10ϵ 27 67, 27 min	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Mónica Hernández Sánchez

VII MEETING ON FUNDAMENTAL COSMOLOGY 7/20

3. FOURTH ORDER LEAPFROG ALGORITHM 3. 1. Study of the *i* parameter and the stepsize

• Acceptance:

$$i = 1$$

• Comparison between second and fourth order Leapfrgog algorithm:

	Iteration of convergence	Convergence time (h)	Acceptance
$\frac{2^{\mathrm{o}}order}{\epsilon}$	2500	55, 81	52,0%
$\begin{array}{c} 4^{\mathrm{o}} \text{ order} \\ 2\epsilon, \ i=1 \end{array}$	340	13, 29	51,75%
$\begin{array}{c} 4^{\mathrm{o}} \text{ order} \\ \epsilon, \ i=2 \end{array}$	100	6,96	83,75%
$\begin{array}{c} 4^{\rm o} \text{ order} \\ \epsilon, \ i=3 \end{array}$	33	3, 12	78,75%

VII MEETING ON FUNDAMENTAL COSMOLOGY 9/20

• Comparison between second and fourth order Leapfrgog algorithm:

	Iteration of convergence	Convergence time (h)	Acceptance
$2^{\circ}order$ ϵ	2500	55, 81	52,0%
4° order $2\epsilon, i = 1$	340	13, 29	51,75%
$\begin{array}{c} 4^{\rm o} \text{ order} \\ \epsilon, \ i=2 \end{array}$	100	6,96	83,75%
4° order $\epsilon, i = 3$	33	3, 12	78,75%

Fourth order Leapfrog algorithm is 18 times faster than the second order algorithm

Second order Leapfrog

Fourth order Leapfrog

• Gelman-Rubin test:

• Gelman-Rubin test:

• Correlation Length:

• Correlation Length:

$\delta(q) \curvearrowleft \mathscr{P}(\delta(q)|\{q\}, \{b\}, \{R\})$ $\{q\} \backsim \mathscr{P}(\{q\}|\{s^o\}, \delta(q), \mathcal{M})$

Mónica Hernández Sánchez

VII MEETING ON FUNDAMENTAL COSMOLOGY 13/20

Dark matter from the BigMD simulation with light-cone evolution

4. BIRTH RESULTS

Galaxy number counts in Eulerian

Galaxy number counts in Lagrangian

Mónica Hernández Sánchez

Dark matter reconstruction

VII MEETING ON FUNDAMENTAL COSMOLOGY 16/20

Dark matter from the BigMD simulation with light-cone evolution

Mónica Hernández Sánchez

VII MEETING ON FUNDAMENTAL COSMOLOGY 17/20

• Correlation length:

• Correlation length:

• Number of independent samples for a fair estimation of the posterior mean:

Kitaura et al. (in prep)

VII MEETING ON FUNDAMENTAL COSMOLOGY 19/20

5. CONCLUSIONS

- We have implemented a **fourth order Leapfrog algorithm** for the discretizaton of the Hamilton's equations.
- Several tests have been developed to study the convergence, the computational time, the acceptance of the iterations and the correlation length:
 - > We get convergence in ~ 30 iterations, **two orders of magnitude less** than with the second order algorithm.
 - We have reduced the computational time needed to reach the convergence a factor ~20.
 - We can obtain independent samples each 10th iterations as opposed to every 300 iterations with the old scheme.
- We have implemented this method in a realistic case with light-cone evolution, survey geometry, selection function, non-linar bias, RSD, displacements...

THANK YOU FOR YOUR ATTENTION