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Motivation



Motivation

I Assess whether primordial B-modes on the order of

r ∼ 10−3 are detectable with a ground-based experiment

operating in the low-frequency range (10-120 GHz).

I This experiment could be a natural complement to other

on-going and planned ones (both on-ground or satellite),

which typically survey frequencies larger than the ones here

considered.

I This is a preliminary study in the context of the

European Low Frequency Survey (ELFS) initiative.

I As a first step we have conducted this study for an

experiment located at the Teide Observatory (Northern

Hemisphere), although the long-term purpose is to cover

the full-sky from ground.
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Methodology Approach

Sky
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Sky Simulations

CMB Foregrounds Noise
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Lewis et al., astro-ph/9911177

Parameter
TT,TE,EE+lowE

+lensing+BAO

Ωb 0.02242 ± 0.00014

Ωc 0.11933 ± 0.00091

100θMC 1.04101 ± 0.00029

τ 0.0561 ± 0.0071

ln
(
1010As

)
3.047 ± 0.014

ns 0.9665 ± 0.0038

Planck 2018 results. VI.
Cosmological parameters,
1807.06209
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Sky Simulations

CMB Foregrounds Noise

SynchQ (23 GHz)

-199.48 656.625

DustQ (120 GHz)

-12.2544 34.7634

AMEQ (23 GHz)

-47.995 162.43
SynchU (23 GHz)

-178.225 147.982

DustU (120 GHz)

-17.7159 19.7675

AMEU (23 GHz)

-127.339 121.775

Thorne et al., 1608.02841 (PySM)
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Sky Simulations

CMB Foregrounds Noise
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γd
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-3.5513 -1.09871

Thorne et al., 1608.02841 (PySM)
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Sky Simulations

CMB Foregrounds Noise
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I Mimics the frequency

dependence of the major

contaminants: synchrotron

and thermal dust

I 1µK arc min @ 100 GHz

synch contribution = dust

contribution @ 70 GHz

Notice that, at this stage, we are not including atmospheric

noise.
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Component Separation Approach

I Full-parametric pixel-based maximum likelihood method.

I Affine invariant MCMC sampler.1

I Signal model[
SQ

SU

]
=

[
cQ

cU

]
︸ ︷︷ ︸
CMB

+

[
as

Q

as
U

](
ν

νs

)βs+cs(ν/νcs)

︸ ︷︷ ︸
Synchrotron

+

[
ad

Q

ad
U

](
ν

νd

)βd
︸ ︷︷ ︸

Dust

+

[
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Q
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](
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)βa+ca(ν/νca)

︸ ︷︷ ︸
AME

1Foreman-Mackey et al., “emcee: the MCMC hammer”.
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Results

I Ground-based Telescope

Telescope Configurations:

LOWBAND

10-20 GHz

MIDBAND

26-46 GHz

HIGHBAND

75-120 GHz

E.g., [4,4,8].

Model Comparison:

Synchrotron + Dust vs. Synchtrotron + Dust + AME

I Ground-based Telescope + LiteBIRD

Detectability

Improvements of Foreground Estimation
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Ground-based Telescope

Telescope ConfigurationsTelescope ConfigurationsTelescope Configurations
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Ground-based Telescope

Model ComparisonModel ComparisonModel Comparison
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LiteBIRD + Ground-Based Telescope

DetectabilityDetectabilityDetectability
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Input (r = 2 · 10−3)

Residuals [10,10,15]

Residuals LiteBIRD+[10,10,15]

rin × 103 model configuration fdel(%) r × 103 σr × 103 (r/σr)

2 SD [10,10,15] 0 2.28 0.68 3.36

2 SD LB + [10,10,15] 0 2.31 0.50 4.63
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LiteBIRD + Ground-Based Telescope

Inprovements on the Foreground EstimationInprovements on the Foreground EstimationInprovements on the Foreground Estimation
Thorne et al., 1608.02841
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Conclusions

I CMB B-modes are detectable with an experiment of this

sort for r ∼ 2 × 10−3.

I This instrument is a helpful complementary tool for

satellite experiments such as LiteBIRD due to:

Detectability improvement.

Foreground characterization.

I The low-frequency range covered presents several

advantages:

Opens a frequency range with sensitivities never

achieved before.

Synchrotron and AME well-characterized to reduce their

contribution at ∼ 100 GHz.
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