On the Detection of Primordial CMB B-modes from Ground at Low Frequency

Elena de la Hoz, Patricio Vielva, R. Belén Barreiro and Enrique Martínez-González

September, 9, 2019

Outline

- 1 Motivation
- 2 Methodology
 - 2.1 Sky Simulations
 - 2.2 Component Separation Approach
- 3 Results
 - 3.1 Ground-based Telescope
 - 3.2 Ground-based Telescope + LiteBIRD
- 4 Conclusions

Assess whether **primordial B-modes** on the order of $r \sim 10^{-3}$ are detectable with a **ground-based** experiment operating in the **low-frequency** range (10-120 GHz).

- Assess whether **primordial B-modes** on the order of $r \sim 10^{-3}$ are detectable with a **ground-based** experiment operating in the **low-frequency** range (10-120 GHz).
- ► This experiment could be a natural **complement** to other on-going and planned ones (both on-ground or satellite), which typically survey frequencies larger than the ones here considered.

- Assess whether **primordial B-modes** on the order of $r \sim 10^{-3}$ are detectable with a **ground-based** experiment operating in the **low-frequency** range (10-120 GHz).
- ► This experiment could be a natural **complement** to other on-going and planned ones (both on-ground or satellite), which typically survey frequencies larger than the ones here considered.
- ► This is a **preliminary study** in the context of the European Low Frequency Survey (**ELFS**) initiative.

- Assess whether **primordial B-modes** on the order of $r \sim 10^{-3}$ are detectable with a **ground-based** experiment operating in the **low-frequency** range (10-120 GHz).
- ► This experiment could be a natural **complement** to other on-going and planned ones (both on-ground or satellite), which typically survey frequencies larger than the ones here considered.
- ► This is a **preliminary study** in the context of the European Low Frequency Survey (**ELFS**) initiative.
- ► As a first step we have conducted this study for an experiment located at the Teide Observatory (Northern Hemisphere), although the long-term purpose is to cover the full-sky from ground.

Methodology

Methodology Approach

Parameter	TT,TE,EE+lowE +lensing+BAO				
Ω_b	0.02242 ± 0.00014				
Ω_c	0.11933 ± 0.00091				
$100\theta_{MC}$	1.04101 ± 0.00029				
au	0.0561 ± 0.0071				
$\ln(10^{10}A_s)$	3.047 ± 0.014				
n_s	0.9665 ± 0.0038				

Planck 2018 results. VI. Cosmological parameters, 1807.06209

Thorne et al., 1608.02841 (PySM)

Thorne et al., 1608.02841 (PySM)

- ► Mimics the frequency dependence of the major contaminants: synchrotron and thermal dust
- ► $1\mu K$ arc min @ 100 GHz synch contribution = dust contribution @ 70 GHz

Notice that, at this stage, we are not including **atmospheric** noise.

Component Separation Approach

- ▶ Full-parametric pixel-based maximum likelihood method.
- ▶ Affine invariant MCMC sampler.¹
- ► Signal model

$$\begin{bmatrix} S^{\mathrm{Q}} \\ S^{\mathrm{U}} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{c}^{\mathrm{Q}} \\ \mathbf{c}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{CMB}} + \underbrace{\begin{bmatrix} \mathbf{a_s}^{\mathrm{Q}} \\ \mathbf{a_s}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{Synchrotron}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d}} + \underbrace{\begin{bmatrix} \mathbf{a_a}^{\mathrm{Q}} \\ \mathbf{a_d}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{Dust}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_a}^{\mathrm{Q}} \\ \mathbf{a_a}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{AME}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{AME}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{AME}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{AME}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{AME}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{CMB}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{CMB}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{CMB}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})}}_{\mathrm{CMB}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})} + \underbrace{\begin{bmatrix} \mathbf{a_b}^{\mathrm{Q}} \\ \mathbf{a_b}^{\mathrm{U}} \end{bmatrix}}_{\mathrm{CMB}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/\nu_{ca})}_{\mathrm{CMB}} \left(\frac{\nu}{\nu_a} \right)^{\boldsymbol{\beta_d} + \mathbf{c_a} (\nu/$$

¹Foreman-Mackey et al., "emcee: the MCMC hammer".

Results

Results

- ► Ground-based Telescope
 - Telescope Configurations:

LOWBAND 10-20 GHz MIDBAND 26-46 GHz HIGHBAND 75-120 GHz

E.g., [4,4,8].

- Model Comparison:
 Synchrotron + Dust vs. Synchrotron + Dust + AME
- ► Ground-based Telescope + LiteBIRD
 - Detectability
 - Improvements of Foreground Estimation

Ground-based Telescope

Telescope Configurations

Ground-based Telescope

Model Comparison

LiteBIRD + Ground-Based Telescope

$r_{in} \times 10^3$	model	configuration	$f_{del}(\%)$	$r\times 10^3$	$\sigma_r \times 10^3$	(r/σ_r)
2 2	SD SD	[10,10,15] LB + $[10,10,15]$	0 0	2.28 2.31	0.68 0.50	3.36 4.63

LiteBIRD + Ground-Based Telescope

Inprovements on the Foreground Estimation

Thorne et al., 1608.02841

► CMB **B-modes** are **detectable** with an experiment of this sort for $r \sim 2 \times 10^{-3}$.

- ► CMB **B-modes** are **detectable** with an experiment of this sort for $r \sim 2 \times 10^{-3}$.
- ► This instrument is a helpful **complementary tool** for satellite experiments such as **LiteBIRD** due to:
 - Detectability improvement.
 - Foreground characterization.

- ► CMB **B-modes** are **detectable** with an experiment of this sort for $r \sim 2 \times 10^{-3}$.
- ► This instrument is a helpful **complementary tool** for satellite experiments such as **LiteBIRD** due to:
 - Detectability improvement.
 - Foreground characterization.
- ► The low-frequency range covered presents several advantages:
 - Opens a frequency range with sensitivities never achieved before.
 - Synchrotron and AME well-characterized to reduce their contribution at ~ 100 GHz.