VII Meeting on Fundamental Cosmology

Semiclassical avoidance of singularities in cosmology and black holes

Valentin Boyanov

In collaboration with:

Carlos Barceló, Raúl Carballo-Rubio, Luis J. Garay

Introduction

Semiclassical gravity: GR + QFT in curved spacetimes,

$$G_{\mu\nu} = 8\pi \left[T_{\mu\nu}^{CL} + I_P^2 \left\langle T_{\mu\nu}^{QM} \right\rangle_0 \right]. \tag{1}$$

- $\langle T_{\mu\nu}^{QM} \rangle_0$ is the renormalised vacuum expectation value of the stress-energy tensor operator, constructed from a quantum field operator and its covariant derivatives.
 - For a given field, it is a function of the metric and its derivatives.
 - It is zero in flat spacetime.
 - It can be calculated analytically for very few spacetimes.

Semiclassical cosmology

For a homogeneous and isotropic universe,

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + \frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}) \right],$$
 (2)

and a conformally coupled field, it has been shown that 1

$$\left\langle T_{\mu\nu}^{QM} \right\rangle_{0} = \frac{\alpha}{3} \left(g_{\mu\nu} \Box R - \nabla_{\mu} \nabla_{\nu} R + R R_{\mu\nu} - \frac{1}{4} R^{2} g_{\mu\nu} \right) +$$

$$\beta \left(\frac{2}{3} R R_{\mu\nu} - R_{\mu}{}^{\rho} R_{\nu\rho} + \frac{1}{2} R_{\rho\sigma} R^{\rho\sigma} g_{\mu\nu} - \frac{1}{4} R^{2} g_{\mu\nu} \right)$$

$$(3)$$

3/8

¹P. C. W. Davies, S. A. Fulling, S. M. Christensen, and T. S. Bunch, Ann. Phys. (N.Y.) 109, 108 (1977).

Energy content near the initial singularity

Consider a classical universe in which for $a \rightarrow 0$ we have

$$\rho^{CL} \sim \frac{1}{a^s}.\tag{4}$$

The leading order terms close to the singularity for the quantum contributions to the energy density and pressure are

$$\rho^{QM} \sim \frac{1}{a^{2s}} \left[\frac{1}{(s/2 - 1)^2} (-3\alpha + \beta) + 3\alpha \right],$$

$$\rho^{QM} \sim (2s - 3) \frac{1}{3} \rho^{QM}.$$
(5)

- We get a larger divergence for the quantum term, $\rho^{QM} \sim (\rho^{CL})^2$.
- The sign of the quantum energy depends of the coefficients α, β .

Some bouncing solutions

Figure: Asymptotically classical solutions for k=0,1 and -1. Constants $\beta=6\alpha=1/480\pi^2$. Source: Paul Anderson, Phys. Rev. D 28, 2695 (1983).

Black holes problems

What about black hole singularities?

- There are no known solutions for $\langle T_{\mu\nu}^{QM} \rangle$ in spacetimes approaching the formation of black holes.
- Approximations for spherically symmetric models fail near the origin.
- But there are some indications that something similar may occur...

Oppenheimer-Snyder model

The Oppenheimer-Snyder model for black-hole formation consists of a collapsing homogeneous ball of dust, the interior of which behaves as a patch of a k=1 contracting universe,

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + \frac{dr^{2}}{1 - r^{2}} + r^{2}(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}) \right].$$
 (6)

- The classical energy density behaves as $ho^{\it CL} \sim 1/a^3$.
- An approximation (through dimensional reduction) suggests the quantum contribution to be $ho^{QM}\sim -1/a^5$.
 - → A full semiclassical treatment of the problem will give a substantially different result from its classical counterpart.

Conclusion

- The semiclassical theory provides a first approach toward quantum corrections of classical gravity.
- Cases in which curvature is large (nearly Planckian) are among those which would have substantial corrections.

Thank you for your attention!

8/8