

Miguel Aparicio Resco Universidad Complutense de Madrid and IPARCOS-UCM

with A.L. Maroto, L.R. Abramo, J. Alcañiz and C. Hernández Monteagudo [J-PAS collaboration]

VII Meeting on Fundamental Cosmology

The J-PAS survey

The Javalambre Physics of the Accelerated universe Astrophysical Survey

N. Benítez al. [J-PAS Collaboration], arXiv:1403.5237

- J-PAS is a photometric survey to be conducted at OAJ, Teruel (Spain) by the 2.5 m diameter dedicated Javalambre Survey Telescope (JST/T250).
- JST will be equipped with the Javalambre Panoramic Camera (JPCam), a 4.7 sq. deg. 1.2Gpx camera with 54 narrow- and 4 broad-band filters covering the optical range.
- JPAS will observe 8500 sq. deg. starting next year and measure photo-z with δz=0.003(1+z) for 9 x 10⁷ ELG and LRG up to z=1.3 and several millions QSO up to z=3.9

The J-PAS survey

Galaxy and QSO number densities

	J-PAS				
z	LRG	ELG	QSO		
0.3	226.6	2958.6	0.45		
0.5	156.3	1181.1	1.14		
0.7	68.8	502.1	1.61		
0.9	12.0	138.0	2.27		
1.1	0.9	41.2	2.86		
1.3	0	6.7	3.60		
1.5	0	0	3.60		
1.7	0	0	3.21		
1.9	0	0	2.86		
2.1	0	0	2.55		
2.3	0	0	2.27		
2.5	0	0	2.03		
2.7	0	0	1.81		
2.9	0	0	1.61		
3.1	0	0	1.43		
3.3	0	0	1.28		
3.5	0	0	1.14		
3.7	0	0	0.91		
3.9	0	0	0.72		

JPAS

 V_{eff} = 14 Gpc³

DESI

	DESI				
z	BGS	LRG	ELG	QSO	
0.1	2240	0	0	0	
0.3	240	0	0	0	
0.5	6.3	0	0	0	
0.7	0	48.7	69.1	2.75	
0.9	0	19.1	81.9	2.60	
1.1	0	1.18	47.7	2.55	
1.3	0	0	28.2	2.50	
1.5	0	0	11.2	2.40	
1.7	0	0	1.68	2.30	

Euclid

Εı	Euclid		
z	ELG		
0.6	356		
0.8	242		
1.0	181		
1.2	144		
1.4	99		
1.6	66		
1.8	33		

in 10^{-5} (h Mpc)⁻³ units

Modified gravity: model independent approach

Modified gravity: model independent approach

In a wide range of models for DE and MG sub-Hubble perturbations in the quasi-static approximation satisfy

Modified gravity: model independent approach

In a wide range of models for DE and MG sub-Hubble perturbations in the quasi-static approximation satisfy

Modified Poisson equation

$$k^2 \Psi \simeq -4\pi G_{\text{eff}} a^2 \rho_m \delta_m$$

Modified gravity: model independent approach

In a wide range of models for DE and MG sub-Hubble perturbations in the quasi-static approximation satisfy

Modified Poisson equation

Growth equation

$$k^2 \Psi \simeq -4\pi G_{\rm eff} a^2 \rho_m \delta_m$$

$$\delta_m'' + \left(2 + \frac{H'}{H}\right)\delta_m' - \frac{3G_{\text{eff}}}{2G}\Omega_m\delta_m \simeq 0$$

Modified gravity: model independent approach

In a wide range of models for DE and MG sub-Hubble perturbations in the quasi-static approximation satisfy

Modified Poisson equation

Growth equation

$$k^2 \Psi \simeq -4\pi G_{\rm eff} a^2 \rho_m \delta_m$$

$$\delta_m'' + \left(2 + \frac{H'}{H}\right)\delta_m' - \frac{3G_{\text{eff}}}{2G}\Omega_m\delta_m \simeq 0$$

Lensing equation

$$\frac{\Psi - \Phi}{2} \simeq -\frac{3G_{\text{eff}}}{2G} \frac{1 + \eta}{2} \left(\frac{aH}{k}\right)^2 \Omega_m \delta_m$$

Modified gravity: model independent approach

In a wide range of models for DE and MG sub-Hubble perturbations in the quasi-static approximation satisfy

Modified Poisson equation

$$k^2 \Psi \simeq -4\pi G_{\text{eff}} a^2 \rho_m \delta_m$$

Growth equation

$$\delta_m'' + \left(2 + \frac{H'}{H}\right)\delta_m' - \frac{3G_{\text{eff}}}{2G}\Omega_m\delta_m \simeq 0$$

Lensing equation

$$\frac{\Psi - \Phi}{2} \simeq -\frac{3G_{\text{eff}}}{2G} \frac{1 + \eta}{2} \left(\frac{aH}{k}\right)^2 \Omega_m \delta_m$$

 Modification of GR parametrized by two free functions of time and scale

$$\mu(k,a) = \frac{G_{\text{eff}}}{G}$$

$$\eta(k,a) = -\frac{\Phi}{\Psi}$$

Pogosian, Silvestri, Buniy, arXiv:1302.1193

Effective Newton constant

Gravitational slip parameter

Modified gravity: model independent approach

GR with smooth DE

$$\mu = \eta = 1$$

Modified gravity: model independent approach

GR with smooth DE

$$\mu = \eta = 1$$

Any deviation with respect to $\mu = \eta = 1$ could signal a breakdown of General Relativity. We will assume scale (k) invariance and consider two ansatzs:

Modified gravity: model independent approach

GR with smooth DE

$$\mu = \eta = 1$$

Any deviation with respect to $\mu = \eta = 1$ could signal a breakdown of General Relativity. We will assume scale (k) invariance and consider two ansatzs:

a) Constant μ and $~\eta$

Modified gravity: model independent approach

GR with smooth DE

$$\mu = \eta = 1$$

Any deviation with respect to $\mu = \eta = 1$ could signal a breakdown of General Relativity. We will assume scale (k) invariance and consider two ansatzs:

a) Constant μ and η

b) Time-dependent parametrization:

$$\mu(a) = 1 + (\mu_0 - 1) \frac{1 - \Omega_m(a)}{1 - \Omega_m},$$
$$\eta(a) = 1 + (\eta_0 - 1) \frac{1 - \Omega_m(a)}{1 - \Omega_m},$$

P.A.R. Ade et al. [Planck collaboration] arXiv:1502.01590

Observables

Galaxy power spectrum in redshift space

$$P(k_r, \hat{\mu}_r, z) = \frac{D_{Ar}^2 E}{D_A^2 E_r} (b + f \,\hat{\mu}^2)^2 \, D^2 \sigma_8^2 \hat{P}(k) \, e^{-k_r^2 \,\hat{\mu}_r^2 \,\sigma_r^2}$$

Lensing convergence power spectrum

$$P_{ij}(\ell) \simeq H_0 \sum_{a} \frac{\Delta z_a}{E_a} K_i(z_a) K_j(z_a) L_a^2 \hat{P}\left(\frac{\ell}{\chi(z_a)}\right)$$

where $L = \Omega_m D \frac{\mu (1+\eta)}{2} \sigma_8$
$$H(z) \qquad \mu(k,z) \qquad \eta(k,z)$$

Fisher matrices

$$F_{\alpha\beta}^{C} = \frac{1}{8\pi^{2}} \int_{-1}^{1} d\hat{\mu} \int_{k_{\min}}^{\infty} k^{2} V_{eff} \left. \frac{\partial \ln(P(k,\hat{\mu},z_{a}))}{\partial p_{\alpha}} \right|_{r} \left. \frac{\partial \ln(P(k,\hat{\mu},z_{a}))}{\partial p_{\beta}} \right|_{r} e^{-k^{2} \Sigma_{\perp}^{2} - k^{2} \hat{\mu}^{2} (\Sigma_{\parallel}^{2} - \Sigma_{\perp}^{2})} dk$$
$$V_{eff} = \left(\frac{n(z_{a}) P(k,\hat{\mu},z)}{1 + n(z_{a}) P(k,\hat{\mu},z)} \right)^{2} V_{a}$$

Galaxy clustering

Galaxy lensing

$$F_{\alpha\beta}^{L} = f_{sky} \sum_{\ell} \Delta \ln \ell \, \frac{(2\ell+1)\,\ell}{2} \operatorname{Tr} \left[\frac{\partial \mathbf{P}}{\partial p_{\alpha}} \mathbf{C}^{-1} \frac{\partial \mathbf{P}}{\partial p_{\beta}} \mathbf{C}^{-1} \right]$$
$$C_{ij} = P_{ij} + \gamma_{int}^{2} \, \hat{n}_{i}^{-1} \, \delta_{ij} \qquad \qquad \hat{n}_{i} = n_{\theta} \, \frac{\int_{\bar{z}_{i-1}}^{\bar{z}_{i}} n(z) \, dz}{\int_{0}^{\infty} n(z) \, dz}$$

Surveys specifications and fiducial cosmology

Clustering

Survey	JPAS	DESI	Euclid
Area (sq. deg)	4000/8500	14000	15000
δz	0.003	0.001	0.001

Fiducial ΛCDM Planck (2015) cosmology. Only linear scales

Lensing

Survey	z_{mean}	δz	n_{θ}^{LRG}	n_{θ}^{ELG}	$n_{\theta}^{LRG+ELG}$
JPAS	0.5	0.03	3.25	9.07	12.32
Euclid	0.9	0.05		35	35

$$b(z) = \frac{b(0)}{D(z)}$$

$$b(0) = 0.87 \text{ for ELG}$$

$$= 1.7 \text{ for LRG}$$

$$= 1.4 \text{ for BGS}$$
For QSO
$$b(z) = 0.53 + 0.289 (1+z)^2$$

CPL parametrization of Dark Energy

$$\omega(a) = \omega_0 + \omega_a(1-a)$$

Effective Newton constant

Gravitational slip parameter

• We have forecasted the capability of J-PAS to measure deviations with respect to standard General Relativity on cosmological scales.

- We have forecasted the capability of J-PAS to measure deviations with respect to standard General Relativity on cosmological scales.
- We have considered the model-independent approach to modified gravity with two effective parameters: an effective Newton constant and the gravitational slip parameter

- We have forecasted the capability of J-PAS to measure deviations with respect to standard General Relativity on cosmological scales.
- We have considered the model-independent approach to modified gravity with two effective parameters: an effective Newton constant and the gravitational slip parameter
- We have considered clustering and weak lensing observations with three types of tracers: ELGs, LRGs and QSOs

- We have forecasted the capability of J-PAS to measure deviations with respect to standard General Relativity on cosmological scales.
- We have considered the model-independent approach to modified gravity with two effective parameters: an effective Newton constant and the gravitational slip parameter
- We have considered clustering and weak lensing observations with three types of tracers: ELGs, LRGs and QSOs
- JPAS 8.5k will be able to measure the effective Newton constant, the gravitational slip parameter and the Hubble parameter with a precision 2-7%.

- We have forecasted the capability of J-PAS to measure deviations with respect to standard General Relativity on cosmological scales.
- We have considered the model-independent approach to modified gravity with two effective parameters: an effective Newton constant and the gravitational slip parameter
- We have considered clustering and weak lensing observations with three types of tracers: ELGs, LRGs and QSOs
- JPAS 8.5k will be able to measure the effective Newton constant, the gravitational slip parameter and the Hubble parameter with a precision 2-7%.
- Compared to future surveys (DESI and Euclid) JPAS will provide the best precision for measurements below z = 0.6 thanks to the large number of ELG detectable in that redshift range