Constraining the cross section of dark matter with giant radial arcs in galaxy clusters

J. Vega-Ferrero¹, J. M. Diego², G. Yepes³ and J. M. Dana

¹*University of Pennsylvania (UPenn)* ²*Instituto de Física de Cantabria (IFCA-CSIC)* ³*Universidad Autónoma de Madrid (UAM)*

- 1. Motivation
- 2. SIDM simulations of cluster-size halos
- 3. Gravitational lensing by galaxy clusters
- 4. Radial arcs statistics
- 5. Conclusions and future prospects

1. Motivation

Lambda Cold Dark Matter (ΛCDM)

- Collision-less cold DM
- Extremely successful for large scale structure
- Crisis on small scales (core-cusp, diversity, missing satellites, TBTF problems)
- Cluster scales (**core-cusp problem** / baryon physics (AGN) \rightarrow cluster cores)
- Self-interacting dark matter (Spergel & Steinhardt 2000)
 - Elastic scatter DM (σ/m): $R_{\rm scat} = \sigma v_{\rm rel} \rho_{\rm dm}/m \approx 0.1 \,\,{\rm Gyr}^{-1} \times \left(\frac{\rho_{\rm dm}}{0.1 \,\,{\rm M_\odot/pc^3}}\right) \left(\frac{v_{\rm rel}}{50 \,\,{\rm km/s}}\right) \left(\frac{\sigma/m}{1 \,\,{\rm cm^2/g}}\right)$
 - Small scales: cusps into cores and TBTF (σ/m ~ 0.5-1 cm²/g)

1. Motivation

Lambda Cold Dark Matter (ΛCDM)

- Collision-less cold DM
- Extremely successful for large scale structure
- Crisis on small scales (core-cusp, diversity, missing satellites, TBTF problems)
- Cluster scales (**core-cusp problem** / baryon physics (AGN) → cluster cores)
- Self-interacting dark matter (Spergel & Steinhardt 2000)
 - Elastic scatter DM (σ/m): $R_{\rm scat} = \sigma v_{\rm rel} \rho_{\rm dm}/m \approx 0.1 \,\,{\rm Gyr}^{-1} \times \left(\frac{\rho_{\rm dm}}{0.1 \,\,{\rm M_\odot/pc^3}}\right) \left(\frac{v_{\rm rel}}{50 \,\,{\rm km/s}}\right) \left(\frac{\sigma/m}{1 \,\,{\rm cm^2/g}}\right)$
 - Small scales: cusps into cores and TBTF (σ/m ~ 0.5-1 cm²/g)
 - Cluster scales
 - Bullet cluster: σ/m ≤ 0.1 cm²/g (Randall et al. 2008)
 - core clusters with $\sigma/m \sim 0.1 \text{ cm}^2/g$ (Yoshida et al. 2000, Rocha et al. 2013)
 - Diversity central densities with σ/m ~ 1 cm²/g (Rocha et al. 2013)
 - Cluster ellipticity: σ/m ~ 1 cm²/g not excluded (Peter et al. 2013)
 - Strong lensing: σ/m < 0.1 cm²/g (Meneghetti et al. 2001)

High rate

in clusters

1. Motivation

• Meneghetti et al. 2001

- Extreme strong lensing arcs in simulated SIDM cluster-size halo
- **1** halo with $M_{vir} = 7.4 \times 10^{14} h^{-1} M_{\odot}$ at z = 0.278 (from Yoshida et al. 2000a,b)
- SIDM with $\sigma/m < 0.1, 1, 10 \text{ cm}^2/\text{g}$
 - ▶ NO Radial arcs $\Rightarrow \sigma/m < 0.1 \text{ cm}^2/\text{g}$

2. SIDM simulations of cluster-size halos

1 halo zoom simulations (M_{200c} ~ 10¹⁵ h⁻¹ M_☉ at z=0)

Strongest lens and mayor merger at $z \sim (0.250-0.333)$

5 halo zoom simulations (M_{200c} > 10¹⁵ h⁻¹ M_☉ at z=0)

Strongest lenses at z ~ (0.250, 0.333, 0.429, 0.538)

Non-radiative runs (adiabatic): DM + GAS

2. SIDM simulations of cluster-size halos

- 6 cluster-size halos with GIZMO (*Hopkings 2015, 2017*)
 - Based on P-GADGET and GADGET-2 (*Springel 2005*)
 - SPH + grid-based/AMR schemes
 - SIDM module (*Rocha et al. 2013*)
 - DM + GAS (non-radiative) particles
 - Same ACDM initial conditions
 - **SIDM cross-section** (velocity independent)

 $\sigma/m = 1 \text{ cm}^2/\text{g}$

2. SIDM simulations of cluster-size halos

• 6 cluster-size halos with SIDM

 $\sigma/m = 1 \text{ cm}^2/\text{g}$

cluster	model	z	M_{SO}	M_{EO}	b/c	a/c		
clus2	ACDM	0.250	1.88	2.15	0.52	0.37		
clus2	SIDM	0.250	1.91	2.13	0.54	0.42		
clus2	ACDM	0.333	2.04	2.21	0.58	0.38		
clus2	SIDM	0.333	2.05	2.19	0.58	0.43		
clus2	ACDM	0.429	2.10	2.18	0.64	0.44		
clus2	SIDM	0.429	2.07	2.16	0.65	0.47		
clus2	ACDM	0.538	1.82	1.92	0.67	0.47		
clus2	SIDM	0.538	1.80	1.92	0.66	0.48		
clus7	ACDM	0.429	1.38	1.49	0.48	0.44		
clus7	SIDM	0.429	1.36	1.48	0.49	0.45		
clus9	ACDM	0.250	1.48	1.54	0.70	0.47		
clus9	SIDM	0.250	1.49	1.54	0.75	0.53		
clue0	ACDM	0 333	1.36	1.44	0.65	0.45		
clus9	SIDM	0.333	1.30	1.44	0.03	0.43		
ciusy	SIDM	0.555	1.57	1.45	0.75	0.55		
clus9	ACDM	0.538	1.31	1.34	0.65	0.50		
clus9	SIDM	0.538	1.32	1.34	0.70	0.55		
clus11	ACDM	0.250	1.41	1.40	0.60	0.55		
clus11	SIDM	0.250	1.40	1.39	0.63	0.58		
	ACDM	0.200	1 2 1	1.22	0.61	0.57		
clus11	SIDM	0.300	1.31	1.32	0.61	0.57		
elusiii	SIDM	0.500	1.51	1.52	0.00	0.04		
clus11	ACDM	0.333	1.25	1.28	0.57	0.51		
clus11	SIDM	0.333	1.24	1.27	0.58	0.54		
clus30	ACDM	0.538	1.03	1.10	0.59	0.45		
clus30	SIDM	0.538	1.03	1.10	0.62	0.47		
0	ACDM	0.420	1.02	1.07	0.74	0.46		
clus82	SIDM	0.429	1.05	1.07	0.74	0.40		
010502	SIDN	0.429	1.04	1.07	0.74	0.70		
	M200c							
-			Axis	ratios				
L								

• Deflection angle, convergence, shear and magnification

- Ray-shooting (*Meneghetti et al. 2008, 2010*)
 - Project halo particles (DM+GAS) within 4.3*h*⁻¹Mpc side box
 - Light-rays through a regular grid of 512×512 pix (250'' x 250'')
 - 1,000 random projections on the lens plane
 - Select **super-critical projections** with $\mu_r > 1,000$

Super-critical projections (μ_r > 1,000)

ΛCDM SIDM Cluster Z 0.250 \checkmark clus2 X clus9 0.250 \checkmark X SIDM clusters at clus11 0.250 \checkmark X low redshift are not supercritical 0.300 \checkmark 1 clus11 0.333 1 X clus₂ Cores with 1 0.333 clus9 / $\Sigma < \Sigma_{c}$ clus11 0.333 1 1 **Strong lensing** comparison clus2 0.429 \checkmark 1 **ACDM/SIDM** DM selfclus7 0.429 1 / 6 halos interactions in 0.429 4 redshifts clus82 \checkmark 1 mergers 1 clus2 0.538 1 0.538 1 clus9 1 clus30 0.538

- Super-critical projections (μ_r > 1,000)
 - Einstein radius slightly larger in ACDM than SIDM

 $\theta_E \propto \sqrt{\Sigma(\langle R_E)}$

- Number of projections with tangential CC larger in ΛCDM than SIDM
- Number of projections with radial
 CC larger in ΛCDM than SIDM

cluster	model	Z	$\theta_E('')$	$\max(\theta_E)$	nt	n _r
clus11	ΛCDM	0.300	35.9 ^{+5.9} _{-12.1}	62.6	1000	238
clus11	SIDM	0.300	$31.5^{+6.9}_{-12.4}$	58.2	1000	163
clus11	ΛCDM	0.333	$35.3^{+3.6}_{-3.4}$	56.0	1000	580
clus11	SIDM	0.333	$20.4^{+13.2}_{-5.5}$	50.7	1000	194
clus9	ΛCDM	0.333	$20.3^{+3.9}_{-3.2}$	41.7	966	213
clus9	SIDM	0.333	$16.8^{+1.1}_{-2.7}$	20.2	60	37
clus2	ΛCDM	0.429	$21.3^{+14.5}_{-5.5}$	52.8	1000	361
clus2	SIDM	0.429	$33.2^{+2.2}_{-3.8}$	49.1	297	77
clus7	ΛCDM	0.429	$19.5^{+7.9}_{-4.9}$	49.4	802	148
clus7	SIDM	0.429	$18.0^{+2.6}_{-5.5}$	41.4	335	40
clus82	ΛCDM	0.429	$33.2^{+4.7}_{-5.5}$	45.0	1000	771
clus82	SIDM	0.429	$30.4^{+4.6}_{-4.7}$	43.6	1000	449
clus2	ΛCDM	0.538	$18.8^{+4.6}_{-2.8}$	32.3	733	411
clus2	SIDM	0.538	$18.4^{+3.6}_{-3.4}$	29.5	160	14
clus9	ΛCDM	0.538	$27.2^{+2.1}_{-4.1}$	40.5	943	497
clus9	SIDM	0.538	$23.0^{+2.1}_{-4.8}$	33.7	869	301
clus30	ΛCDM	0.538	$21.1^{+3.7}_{-3.5}$	37.2	1000	272
clus30	SIDM	0.538	$17.3^{+5.6}_{-4.7}$	33.9	602	427

- High-res maps (2048x2048 pix², **0.12x0.12 arcsec²** resolution)
- Lensing of $\mathcal{O}(10^4)$ random sources in the source plane ($z_s = 2.0$)
 - Spatial density of sources increases near the caustics
 - **Elliptical sources** (axis ratios > 0.5), surface = circle 1" radius
- Radial arcs selection: $\mu_r > 5$ and $(\mu_r / \mu_t) > 4$

- High-res maps (2048x2048 pix², **0.12x0.12 arcsec²** resolution)
- Lensing of $\mathcal{O}(10^4)$ random sources in the source plane ($z_s = 2.0$)
 - Spatial density of sources increases near the caustics
 - **Elliptical sources** (axis ratios > 0.5), surface = circle 1" radius
- Radial arcs selection: $\mu_r > 5$ and $(\mu_r / \mu_t) > 4$

- High-res maps (2048x2048 pix², **0.12x0.12 arcsec²** resolution)
- Lensing of $\mathcal{O}(10^4)$ random sources in the source plane ($z_s = 2.0$)
 - Spatial density of sources increases near the caustics
 - **Elliptical sources** (axis ratios > 0.5), surface = circle 1" radius
- Radial arcs selection: $\mu_r > 5$ and $(\mu_r / \mu_t) > 4$

					og / (")		η Νι	umber o
					.0y / () L	Ug W (/ ra	dial arc
cluster	model	z	n _t	n _r	log <i>l</i> (")	max(log <i>l</i>)	log <i>w</i> (")	max(log w)	n _{arcs}
clus11	ΛCDM	0.300	1000	238	$0.94^{+0.14}_{-0.14}$	1.84	$0.03^{+0.12}_{-0.11}$	1.13	212219
clus11	SIDM	0.300	1000	163	$1.04^{+0.13}_{-0.13}$	1.78	$0.27^{+0.10}_{-0.10}$	1.15	93961
clus11	ΛCDM	0.333	1000	580	0.90 ^{+0.11} -0.14	1.68	$-0.01^{+0.13}_{-0.12}$	1.11	343837
clus11	SIDM	0.333	1000	194	$1.00^{+0.13}_{-0.14}$	1.76	$0.27^{+0.11}_{-0.11}$	1.15	67274
clus9	ΛCDM	0.333	966	213	$0.96^{+0.13}_{-0.15}$	1.57	$0.13^{+0.16}_{-0.12}$	1.05	62213
clus9	SIDM	0.333	60	37	$1.03^{+0.16}_{-0.17}$	1.72	$0.77^{+0.12}_{-0.15}$	1.19	707
clus2	ΛCDM	0.429	1000	361	$0.92^{+0.13}_{-0.15}$	1.69	$0.04^{+0.16}_{-0.14}$	1.05	135897
clus2	SIDM	0.429	297	77	$1.04^{+0.13}_{-0.17}$	1.59	$0.21^{+0.16}_{-0.12}$	1.19	19173
clus7	ΛCDM	0.429	802	148	0.91 ^{+0.11} -0.14	1.63	$0.19^{+0.15}_{-0.14}$	1.15	37496
clus7	SIDM	0.429	335	40	$1.09^{+0.16}_{-0.17}$	1.71	$0.55^{+0.19}_{-0.19}$	1.20	3291
clus82	ΛCDM	0.429	1000	771	0.86 ^{+0.11} -0.14	1.71	$-0.07^{+0.15}_{-0.13}$	1.11	437454
clus82	SIDM	0.429	1000	449	$0.97^{+0.13}_{-0.16}$	1.62	$0.13^{+0.14}_{-0.12}$	1.20	206500
clus2	ΛCDM	0.538	733	411	$0.86^{+0.13}_{-0.15}$	1.61	$0.14^{+0.14}_{-0.14}$	1.01	69457
clus2	SIDM	0.538	160	14	$1.01^{+0.19}_{-0.21}$	1.46	$0.44^{+0.13}_{-0.17}$	1.11	619
clus9	ΛCDM	0.538	943	497	$0.91^{+0.14}_{-0.15}$	1.65	$-0.02^{+0.15}_{-0.12}$	1.00	166090
clus9	SIDM	0.538	869	301	0.99 ^{+0.14} _0.16	1.63	$0.29^{+0.16}_{-0.13}$	1.16	42223
clus30	ΛCDM	0.538	1000	272	$0.85^{+0.12}_{-0.14}$	1.67	$0.08^{+0.13}_{-0.12}$	0.98	100856
clus30	SIDM	0.538	602	427	$0.98^{+0.13}_{-0.16}$	1.60	$0.50^{+0.14}_{-0.14}$	1.16	19179

ΛCDM SIDM

11

ļļ

↓**↓**

↓↓

ļļ

• All radial arcs found

5. Conclusions and future prospects

- 6 cluster-size DM halos @ z ~ (0.250, 0.300, 0.333, 0.429, 0.538)
- LCDM and SIDM (σ/m = 1 cm²/g) cosmological models
- 1,000 different projections on the lens plane
- **High-resolution** lensing maps (0.12 arcsec/pix)
- No supercritical SIDM halo for z < 0.3</p>
- Length of radial arcs:
 - *mean*(*I*_{SIDM}) ≥ *mean*(*I*_{LCDM})
 - *max*(*I*_{SIDM}) ~ 60'', *max*(*I*_{LCDM}) ~ 69''
- Width of radial arcs: *mean(wsidm) > mean(wlcdm)*
- Radial arcs in SIDM in regions with smaller convergence and shear
- Comparable radial magnifications

SIDM with $\sigma/m = 1 \text{ cm}^2/\text{g}$ cannot be ruled out based strong lensing by galaxy clusters

To do list:

- Lensing probability in ΛCDM/SIDM (both tangential and radial)
- Increase number of halos (variation in density profiles)
- Velocity-dependence of DM interactions in GIZMO
- **Baryonic effects in SIDM** simulations (*Brinckmann et al. 2018*)

Thank you!