Particle dark matter searches with the Square Kilometre Array

Miguel Méndez Isla University of Cape Town

Collaborators: J.A.R. Cembranos, A. de la Cruz Dombriz, V. Gammaldi

1. Brief introduction & Ingredients for Dark Matter detection

2. Dark Matter sensitivity prospects with SKA

Brief Introduction & Ingredients for Dark Matter detection

-Dark Matter halos:

-Dark Matter decay and annihilation:

$DM \rightarrow SM \rightarrow Stable particles$ $DM + \overline{DM} \rightarrow SM + \overline{SM} \rightarrow Stable particles$

Phenomenology of Dark Matter Indirect Searches

-For the target we focus on:

$$-K_0 E^{\delta} \nabla^2 \psi - \frac{\partial}{\partial E} (b(E)\psi) = Q(\mathbf{r}, E)$$

-Two main mechanisms govern the propagation:

1-Diffusion \rightarrow Two parameters, K_0 , δ 2- Energy losses $\rightarrow b(E) \rightarrow$ Magnetic field

-Source term:
$$Q(\mathbf{r}, E) = \frac{1}{2} \langle \sigma v \rangle \left(\frac{\rho_{\rm DM}(\mathbf{r})}{M}\right)^2 \sum_j \beta_j \frac{\mathrm{d}N_e^j}{\mathrm{d}E}$$

where $\Psi(\mathbf{r}, E)$ is the e⁺ / e⁻ number density/ energy along the whole galaxy

Solution for the diffusion equation: Spherical case

- Target: dwarf spheroidals \rightarrow Spherical diffusion assumed
 - Using the Green's method:
- -The solution for the spherically symmetryc case:

$$\psi(\mathbf{r}, E) = \frac{1}{b(\mathbf{r}, E)} \int_{E}^{M} \mathrm{d}E_{s} G\left(r, E, E_{s}\right) Q(\mathbf{r}, E)$$

with

opa . Univers

$$G(r, E, E_s) = \frac{1}{\sqrt{\pi\lambda_D^2(E, E_s)}} \sum_{n=-\infty}^{\infty} (-1)^n \int_0^{r_h} \mathrm{d}r' \frac{r'}{r_n} \left(\frac{\rho_{\mathrm{DM}}(r')}{\rho_{\mathrm{DM}}(r)}\right)^2 \left[\exp(-g_n^-) - \exp(-g_n^+)\right]$$

with $g_n^{\pm}(r', E, E_s) = \frac{(r' \pm r_n r)^2}{\lambda_D^2(E, E_s)}$

stsity of Cap

tiolistovinU . pdo

Dark Matter sensitivity prospects with SKA

Quantities to be measured

$$I_{\nu}(\theta, z) = \int_{\text{l.o.s.}} \mathrm{d}l \, \frac{j_{\nu}(l, \theta, z)}{4\pi}$$

$$S_{\nu}(z) = \int_{\Omega} \mathrm{d}\Omega I_{\nu}(\theta, z)$$

Sep - VII Meeting on Fundamental Cosmology 10

Flux density from model independent DM

, opa • Universit,

Sep - VII Meeting on Fundamental Cosmology 11

Sensitivity constraints with SKA

Sep - VII Meeting on Fundamental Cosmology 12

Candidates for γ – ray source HESS J1745 – 290 at the GC

sity of Cap

Kopa · Universites

Boost=3.43

Colafrancesco et al arXiv:1508.01386

Boost=1.3 (Tidal effects on DM halos)

Moliné et al arXiv:1603.04057

Annihilation channel	$M\left(\mathrm{TeV}\right)$	Boost = 3.43	Boost = 1.3	Detector
e^+e^-	7.51 ± 0.11	No	No	-
$\mu^+\mu^-$	7.89 ± 0.21	No	No	-
$ au^+ au^-$	12.4 ± 1.3	No	No	-
$u\overline{u}$	27.9 ± 1.8	Yes	No	SKA1-MID
$d\overline{d}$	42.0 ± 4.4	Yes	No	SKA1-MID
<u>s</u> s	53.9 ± 6.2	No	No	-
cc	31.4 ± 6.0	Yes	No	SKA1-MID
$b\overline{b}$	82.0 ± 12.8	No	No	-
$t\overline{t}$	87.7 ± 8.2	No	No	-
W^+W^-	48.8 ± 4.3	No	No	-
ZZ	54.5 ± 4.9	No	No	-

- No evidences of BH in dSphs
- Evidence of BH in dwarf galaxies with low luminosity (AGN tracers)

Conclusions

1- In this work we have set sensitivity constraints for model-independent DM with the SKA-Phase 1.

2- The maximum masses detected by SKA-1 for thermal relics lie close to a few TeV. Candidates in agreement with the AMS positron fraction should leave observable signatures in Draco dSph.

3- DM candidates in agreement with HESS J1745-290 are hard to detect in dSphs. Galaxies hosting BH may open the possibility to measure them.

4- Alternative targets would improve the constraints we set in this work together with the sensitivity expected by SKA-Phase 2.

Thank you

Other dwarf spheroidals

sity of Cape

topa · Universite

13

Target	Distance (kpc)	M/L	DM profile	$B_0(\mu G)$		
Draco	80	320	NFW [‡]	1		
Ursa Minor	66	580	NFW	1		
Segue 1	23	>1000	Einasto	2		
Willman 1	38	700	NFW	1		
$M = 10 { m TeV} W^+ W^-$ channel						
10-1	SKA1 - 10h		- Segue 1			
10-2	- · SKA1 – 100 h		— Willman1			
10 ⁻³	- SKA1 – 1000	h —	— Ursa Minor			
<u>10-4</u>						
$\hat{\Gamma}_{10^{-5}}$						
S S			1			
10-6						
10-7	······································					
10-8						
10-9						
10 1	$\dot{0}^2 = 1 \dot{0}^3 = \nu ($	MHz)	10 ⁴	10 ⁵		