The fractal geometry of the cosmic web

José Gaite

Physics Dept, Univ. Politécnica de Madrid, Spain

PLAN OF THE TALK

- 1. Nonlinear cosmological dynamics.
- 2. The Zeldovich approximation and the adhesion model.
- **3.** Fractal geometry of matter clustering.
- 4. Multifractal analysis of N-body LCDM simulations and of Sloan Digital Sky Survey (SDSS) galaxies.
- 5. Conclusions.

Based on a series of papers in ApJ, EPL, MNRAS, JCAP, AinA, etc.

Perturbations of FLRW

- Linear perturbation theory of the FLRW solution (Lifshitz 1946):
 - Tensor modes that do not affect the matter \rightarrow gravitational waves.
 - Vector modes that do not change the matter density \rightarrow rotational.
 - Scalar modes that change the matter density and grow (if P negligible).

Anisotropies of the CMB (Planck) reveal "initial" density fluctuations.

Nonlinear growth of density fluctuations can be studied within **Newtonian gravity**.

Perturbation theory to higher orders \rightarrow convergence?

Analytic non-perturbative methods.

- The Zeldovich approximation.
- Closure approaches (Peebles, ...).
- Path integral and instantons.
- Exact renormalization group.
- \blacksquare *N*-body cosmological simulations.

Matter fluid motion

Lagrangian map: $x(t, x_0), x_0 \in \mathbb{R}^3$ or 3d manifold. $(x_0 \to q)$. It can be singular for some t.

Lifshitz, Khalatnikov and Sudakov (1961): caustics in a family of geodesics \perp Cauchy hypersurface \rightarrow density singularities for dust matter.

Classification of singularities (or *catastrophes*) is part of *differential topology*. Singularities of Lagrangian maps classified by Arnold (1972):

- Cusp A_3^{\pm} (creation or annihilation).
- Swallowtail A_4 .
- Umbilic D_4^{\pm} (hyperbolic or elliptic).

Matter fluid motion

Three-stream flow in 1d: *cusp* singularity $A_3 \rightarrow 2$ fold A_2 singularities.

Velocity u(x), Lagrangian map x(q), and density $\delta(x)$, for given u(q)and $\delta(q) = 1$. Three subsequent times.

Matter fluid motion

Newton's equations of motion in comoving coordinates $m{x}=m{r}/a$, such that the peculiar velocity $m{u}=a\,\dot{m{x}}=m{v}-Hm{r}$:

$$\frac{d\boldsymbol{u}}{dt} + H\boldsymbol{u} = \boldsymbol{g}, \quad \boldsymbol{g} = \boldsymbol{g}_T - \boldsymbol{g}_b, \quad \boldsymbol{g}_b = \dot{H}\boldsymbol{r} + H^2\boldsymbol{r}.$$

Zeldovich (1970) prolongs linear solution $\boldsymbol{x}(t, \boldsymbol{x}_0) = \boldsymbol{x}_0 + b(t) \boldsymbol{g}(\boldsymbol{x}_0)$ into the nonlinear regime.

$$au := b(t) \Rightarrow$$
 free motion with velocity
 $\widetilde{\boldsymbol{u}} = \frac{d\boldsymbol{x}}{d\tau} = \boldsymbol{g}(\boldsymbol{x}_0).$

The adhesion model

Zeldovich approximation fails after caustics form (locally).

Instead of $\widetilde{\boldsymbol{u}} = \mathsf{cst},$

$$\frac{d\widetilde{\boldsymbol{u}}}{d\tau} = \frac{\partial\widetilde{\boldsymbol{u}}}{\partial\tau} + \widetilde{\boldsymbol{u}}\cdot\nabla\widetilde{\boldsymbol{u}} = \nu\nabla^{2}\widetilde{\boldsymbol{u}}, \quad \boldsymbol{\nu} \to \boldsymbol{0},$$

plus $\nabla \times \boldsymbol{g}(\boldsymbol{x}_0) = 0 \Rightarrow \nabla \times \widetilde{\boldsymbol{u}} = 0$ (potential flow).

The viscosity gives rise to adhesion of matter and models gravity (Gurbatov & Saichev, 1984).

Burgers equations for pressureless turbulence \rightarrow shocks.

Hopf-Cole solution \rightarrow Maxwell's equal area rule.

The adhesion model in 1d

Initial density and velocity fluctuations are non-smooth \Rightarrow non-isolated singularities.

Lagrangian map $q \rightarrow x$. Multi-streaming \rightarrow random *Devil's staircase*.

q-axis = mass.

Cosmic web structure

In 2d, mass adhesion \rightarrow web of filaments.

Filaments surround voids, which are not empty, because they contain weaker filaments.

Adhesion dynamics \rightarrow movie 1.

N-body gravitational dynamics \rightarrow movie 2.

Random mass distributions (1d)

Inverse Devil's staircase and random **continuous** mass distribution. Both are strictly singular.

Fractal geometry

Mandelbrot's uni-fractal (1980), with dimension $D\simeq 1.23.$

Integral of cond. 2-point correl. function

$$M(r) \propto r^D.$$

Generic mass distributions:

 $M(r) \propto r^{\alpha},$

with a range of α .

- Singular mass concentrations: $\alpha < 3 \Rightarrow$ infinite density.
- Ass depletions: $\alpha > 3 \Rightarrow$ vanishing density.

Sizes of sets of mass concentrations or depletions: given α , we have an infinite set of points, measured by its fractal dimension $f(\alpha)$.

Types of multifractal spectrum $f(\alpha)$ (in 3d):

(lognormal like density).

singularities).

N-body LCDM simulations and SDSS galaxies

Coarse-grained multifractal spectra for dark matter and stellar mass

They coincide for mass concentrations, $\alpha < 3$.

CONCLUSIONS

- Structure formation in the nonlinear regime described qualitatively by the adhesion model = Burgers turbulence.
- Strictly singular mass distribution with mass concentrations (clusters) and mass depletions (cosmic voids).
- Multifractal spectrum of the mass distribution obtained from data differs from the adhesion model prediction:
 - $\alpha_{\min} = 1$ instead of $0 \rightarrow$ Newton's gravitational energy diverges for $\alpha < 1$.
 - $\max f = 3 \rightarrow$ no empty voids, like in the adhesion model.