

The viability of low-mass subhalos as targets for gamma-ray dark matter searches

Alejandra Aguirre-Santaella, Miguel A. Sánchez-Conde, Ángeles Moliné, Javier Coronado-Blázquez IFT UAM-CSIC

> VII Meeting on Fundamental Cosmology September 11, 2019 Universidad Complutense de Madrid

Dark matter substructure

Astrophysical factor in dark matter annihilation Via Lactea II N-body cosmological simulation

Goals

Characterization of Via Lactea II Repopulation of Via Lactea II with small subhalos below its resolution limit

Preliminary results

Some conclusions and future work

Dark matter substructure

- ACDM: Bottom-up scenario
- ► Huge amount of small subhalos inside larger halos
- \blacktriangleright Preferred candidate: WIMP \rightarrow annihilation into gamma rays
- Dwarf galaxies and dark satellites: large annihilation fluxes
- Clumpy distribution of subhalos \rightarrow substructure *boost* factor
- Basic properties of subhalos (abundance, distribution, structure) remain unclear
- Relevant for indirect dark matter searches

Lovell et al 201

Astrophysical factor in dark matter annihilation
Gamma-ray searches

$$\phi(\Delta\Omega, E_{min}, E_{max}) = \underbrace{\frac{1}{4\pi} \frac{\langle \sigma V \rangle_{\chi\chi}}{2\pi m_{\chi}^2} \int_{E_{min}}^{E_{max}} \frac{dN_{\gamma}}{dE_{\gamma}} dE_{\gamma}}_{\text{particle physics factor}} \times \underbrace{\int_{\Delta\Omega} \int_{I.o.s.} \rho_{DM}^2(r) \, dl \, d\Omega}_{\text{astrophysical factor}}$$

 $\rho_{DM} \equiv \text{density profile}$

 $m_{\chi} \equiv$ mass of the WIMP $\langle \sigma v \rangle \equiv$ thermally averaged cross section

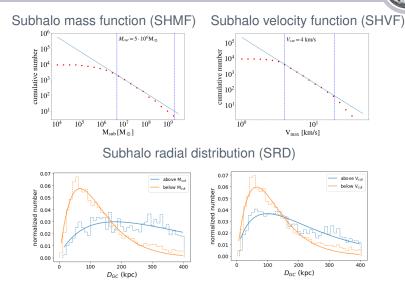
$$\frac{dN_{\gamma}}{dE_{\gamma}} \equiv \text{differential photon flux}$$

N-body cosmological simulations: VL-II

- Best tool to study the formation of CDM halos and substructure in the non-linear regime
- Via Lactea II simulation:
 - Milky Way size halo
 - Subhalos down to 10⁶ M_☉ resolved; large number of subhalos to play with
 - public data at z=0
 - pure N-body: collisionless
 - baryons not included

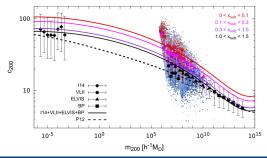
e VL-II
pc] 40.0
104.3
, 1.09 · 10 ⁹
M_{\odot}] 4.1 · 10 ³
oc] 402
53653
ogy WMAP3
0.74

Diemand+08 (0805.1244), Diemand+08 (0703337)


Alejandra Aguirre-Santaella | The viability of low-mass subhalos as targets for gamma-ray dark matter searches

- To study and characterize the subhalo population of VL-II
 - abundance, distribution, structural properties
 - ► and develop a simulation analysis pipeline for gamma-ray searches
- To study the relevance of low-mass subhalos for indirect dark matter searches
 - repopulating the simulation with small subhalos below the resolution of the parent simulation
- To obtain subhalo properties most relevant for gamma-ray searches, i.e.:
 - Astrophysical factors (J-factors)
 - Angular sizes

Characterization of VL-II



Characterization of VL-II Subhalo concentrations

Moliné+17

- ► Structural subhalo properties characterized by $c_{200} = \frac{R_{200}}{r_{c}}$
- Larger concentrations of subhalos compared to halos of the same mass due to tidal stripping and earlier formation times of subhalos
- ► We adopt the subhalo-mass concentration model by Moliné+17
- Power-law extrapolation down to low masses: wrong! (also for halos) (Sánchez-Conde&Prada, 2014)

Alejandra Aguirre-Santaella | The viability of low-mass subhalos as targets for gamma-ray dark matter searches

Repopulating VL-II with low mass subhalos

- ▶ VL-II is complete above $M_{cut} = 5 \cdot 10^6 \,\mathrm{M}_{\odot}$ and $V_{cut} = 4 \,\mathrm{km/s}$
- ➤ To address the importance of low-mass subhalos for gamma-ray DM searches, we repopulate VL-II with low-mass/velocity subhalos below M_{cut}/V_{cut}

Procedure:

- Calculate the expected number of subhalos (SHMF/SHVF)
- Assign a mass/velocity to each one (SHMF/SHVF)
- Assign a distance to the GC to each one (SRD)
- Apply the Roche criterium (general case) to take into account the tidal stripping*
- Assign concentrations
- Calculate the annihilation J-factors
- Calculate the angular sizes of the bulk of the expected WIMP-induced gamma-ray emission

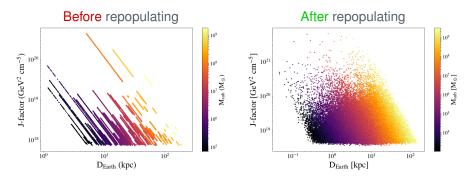
*A subhalo can be considered totally disrupted by tidal forces when its tidal radius exceeds its scale radius Note: Roche criterium does not have any effect because it is naturally implemented in VL-II

Alejandra Aguirre-Santaella | The viability of low-mass subhalos as targets for gamma-ray dark matter searches

J-factor: dark matter annihilation flux

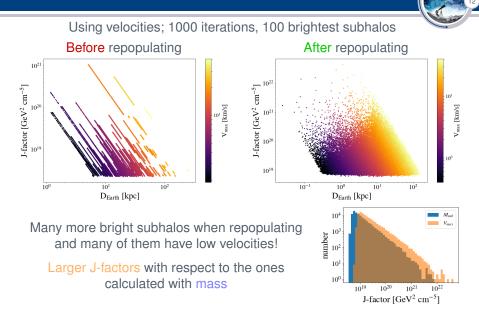
$$J = \int_{\Delta\Omega} \int_{I.o.s.} \rho_{DM}^2(r) \, dI \, d\Omega$$

- Earth not allocated in VL-II
- We perform many realizations by placing the Earth at the same Galactocentric distance but different positional angles

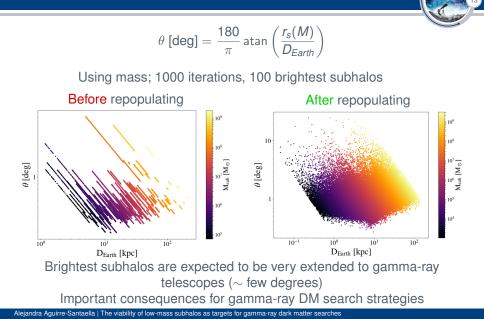

Total integrated J-factor (e.g., Moliné+17)

$$J_{T} = \frac{1}{D^{2}} \frac{M c_{200}(M)^{3}}{[f(c_{200}(M))]^{2}} \frac{200 \rho_{crit}}{9} \left(1 - \frac{1}{(1 + c_{200}(M))^{3}}\right)$$

Alejandra Aguirre-Santaella | The viability of low-mass subhalos as targets for gamma-ray dark matter searches


J-factor: dark matter annihilation flux

Using mass; 1000 iterations, 100 brightest subhalos



Many more bright subhalos when repopulating and many of them have low masses!

J-factor: dark matter annihilation flux

Angular sizes

Conclusions

- ► Pipeline to characterize the subhalo population in N-body simulations → possible to go beyond resolution limits
- \blacktriangleright Low-mass subhalos with masses $10^3-10^6\,M_\odot$ may yield annihilation fluxes as large as those of the most massive ones (i.e. dwarf galaxies)
- ▶ Brightest subhalos → extended gamma-ray sources
- Important consequences for current and planned gamma-ray subhalo searches:
 - constraints on dark matter (e.g. Coronado-Blázquez+19)
 - subhalo boost factor
 - optimization of observation strategies for extended sources

Future

- Further work on subhalo properties:
 - SHMF: dependence of slope with subhalo mass (and host mass?)
 - Subhalo radial distribution: disruption?
 - Use new DM-only simulations with up to date cosmological parameters (Planck)
- Apply our methodology to high-res hydrodynamic simulations

Future

- Further work on subhalo properties:
 - SHMF: dependence of slope with subhalo mass (and host mass?)
 - Subhalo radial distribution: disruption?
 - Use new DM-only simulations with up to date cosmological parameters (Planck)
- Apply our methodology to high-res hydrodynamic simulations

Thank you!