BELEN, a high efficiency neutron detector for (alpha,n) yield measurements

Or

What can we do with BELEN neutron detectors for (alpha,n) reaction measurements?

Ariel Tarifeño-Saldivia

Institute of Energy Technologies Universitat Politècnica de Catalunya (UPC)

On behalf of MANY collaborators!

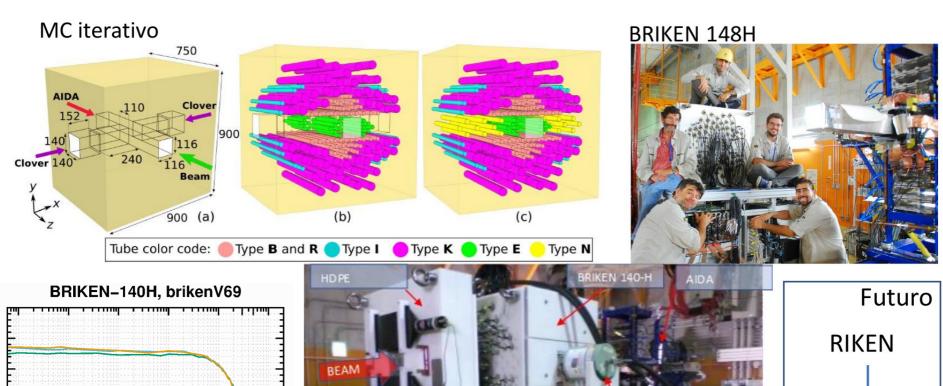
OUTLINE

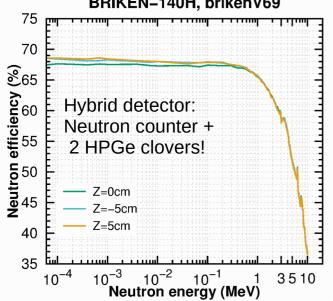
- BELEN detector
- BRIKEN detector
- Examples of neutron counters for (alpha, n)
- MANY project
- MANY neutron counters

BELEN: Beta deLayEd Neutrons


 $n + {}^{3}He \rightarrow p + {}^{3}H + 764 \text{keV}$

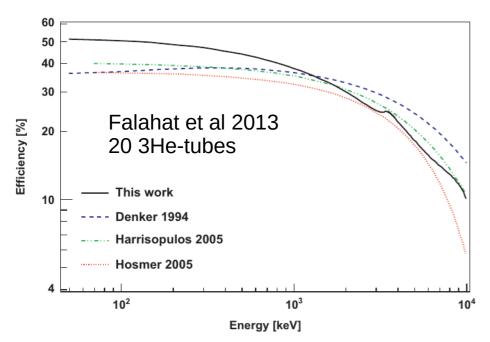
Ohiotivo

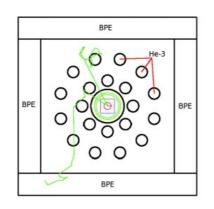

Neutron long counters based on 3He-filled tubes surrounded by HDPE moderator

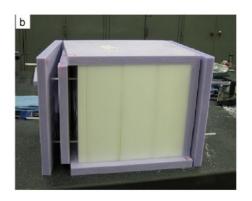

30		***************************************	-	
25				1
25 20 15 10 5			.0.	· · · · · · · ·
15	★ Total • 1st ring			***
10	2nd ring			
5			To annual files	ARTHUR DE LA COLOR
	D.	de la constante de la constant	A STATE OF THE PARTY OF THE PAR	

Nombre	Nº (p, atm)	Experimento	Efic. (<1 MeV)
BELEN-20M1	20 (20)	JYFL-2009	30%
BELEN-20M2	20 (20)	JYFL-2010	45%
BELEN-30	20 (20) + 10 (10)	GSI-2011	40%
BELEN-48M1	38 (8) + 10(10)	JYFL-2014	45%
BELEN-48M2	38(8) + 10(10)	JYFL-2014	60%

BRIKEN: Beta-delayed neutrons at RIKEN

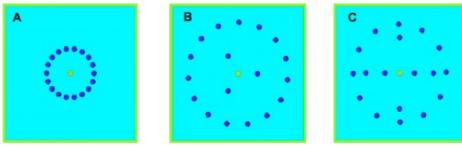


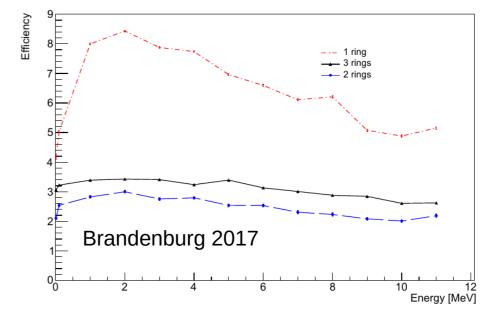

2021


World largest betadelayed neutron counter:

140 3He-tubes in a 'swiss cheese" configuration!

Some examples neutron counters for (alpha,n) reactions

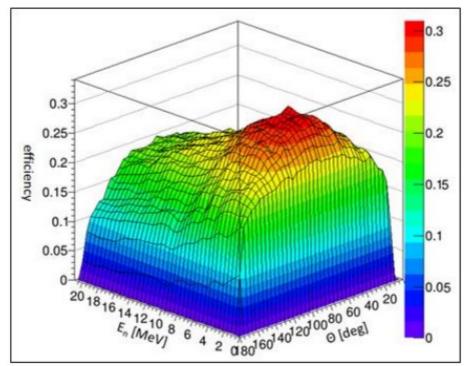


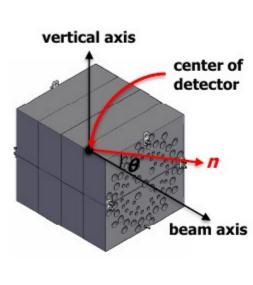

Focus on reactions of astrophysical interest:

- 18O(α,n)21Ne, PRC87 045806(2013)
- 17O(α,n)20Ne, PRC87 045805 (2013)
- 12C(12C,n)23Mg, PRL114 251102 (2015)

BB neutron counter, 18 BF3-tubes, selected conf C.

Alpha-process: Plans to measure $96Zr(\alpha,n)$, $88Sr(\alpha,n)$


HABANERO: 36 3He long counter tubes and 44 BF 3 tubes (80 tubes total)


HABANERO: Heavy ion Accelerated Beam induced (Alpha, Neutron) Emission Ratio Observer

- Properties:
 - 1) Relatively high and flat efficiency for large energy range
 - 2) For 0.1 MeV \leq E_n \leq 20 MeV, $<\epsilon>=22$ %, $\epsilon_{max}=27$ %, $\epsilon_{min}=17$ %, $\delta\epsilon=5$ %.

Neutron detection efficiency by MCNP simulation for neutrons having various theta angle

TEXAS A&M

Sunghoon (Tony) Ahn CNR 2018 30

MANY project: Measurements of (Alpha,N) Yields

N	Measurement of (Alpha,N) Yields/ MANY neutron detector / 3He-tubes stock for 2020								20
Detector	Gas	Group	Units	Pressure (atm)	Total length (cm)	Tube length (cm)	Diameter (inch)	Gas length	Active length (cm)
LDN 252266	3He, CO2	IFIC(10)/ CIEMAT(2)	12	10	67.59	63.72	1	63.3	60
LND 252231	He3, Ar, CO2	UPC(1)/ CIEMAT(3)	4	10.1	63.1	53.2	1	53.2	50
LND 252285	3He, CO2	UPC	1	8	67.59	63.72	1	63.3	60
LND 252303	3He, CO2	UPC	1	4	67.59	63.72	1	63.3	60
LND 252248	3He, CO2	UPC/IFIC	1	20	67.59	63.72	1	63.3	60
LND 252241	He3, CO2	UPC	1	20	38.65	33.97	1	33.97	30.48
LND 252251	3He, CO2	IFIC	1	20	15.35	20.7	1	15.43	13.1
LND 252250	3He, CO2	IFIC	2	10	12.75	7.06	1	7.46	5.13
	Long tubes				<u> </u>				<u> </u>

Available in 2020

3He price: 20-25 €/cm/atm 3He!

Expected during in 2021:

Small tubes

- + 48 tubes, 1", 8 atm, 60 cm active length (coming from Japan)
- + 5-10 tubes, 1", 4 atm, ~ 30cm, requested by UPC next grant.

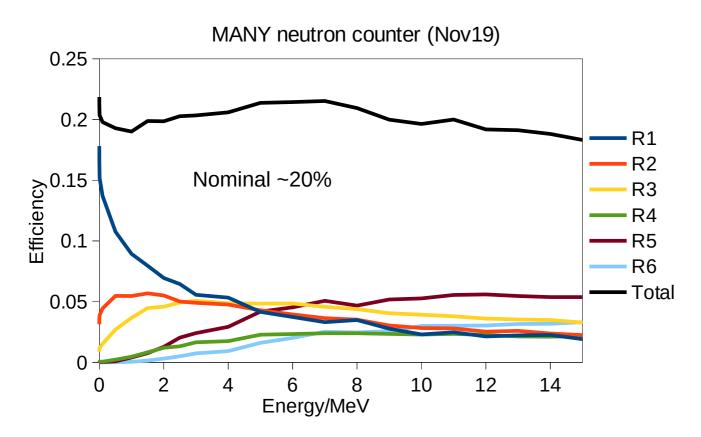
Foreseen in 2021 60-65 tubes (~8atm, 60cm)

4

~700k€ just in 3He tubes...

What could be expected with such a 3He "budget"?

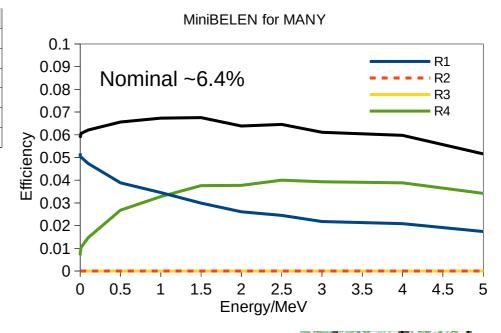
Neutron efficiency v/s flatness?

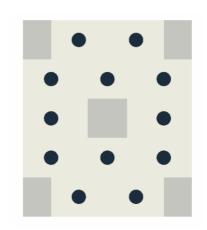

Proposal for MANY neutron detector

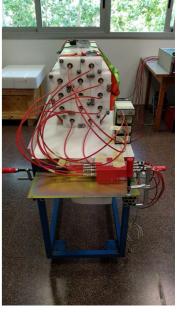
Preliminary optimization study (Nov2019)

- + HDPE moderator core 70x70x70cm3
- + Moderator central hole 7cm diameter
- + 62 3He-filled detectors
- + Six rings at 5.5cm, 10.5cm, 14.5cm, 21.5cm, 25.5cm, 30.5cm.
- + Design compatible for use of a HPGe detector (IEM).
- + Design use cadmium filters to compensate over efficiency at lower energies.
- + Beyond 2021. Experiments to be realistic in 2022...

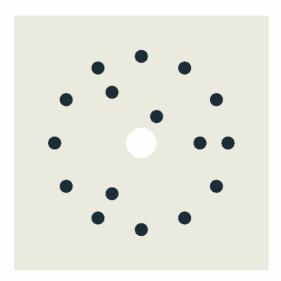
MANY_NC (Nov19)

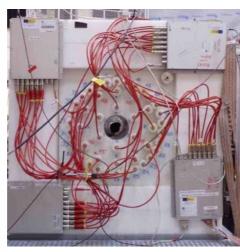

E_low = 100 keV							
E_up/MeV	MeV 1 5 8 10 15 18						
Average_eff	19.36%	20.04%	20.36%	20.28%	19.97%	19.58%	
Flatness	1.04	1.12	1.13	1.13	1.18	1.31	
Max_eff	19.79%	21.37%	21.53%	21.53%	21.53%	21.53%	
Min_eff	19.01%	19.01%	19.01%	19.01%	18.32%	16.43%	
Delta_eff	0.78%	2.36%	2.52%	2.52%	3.21%	5.10%	

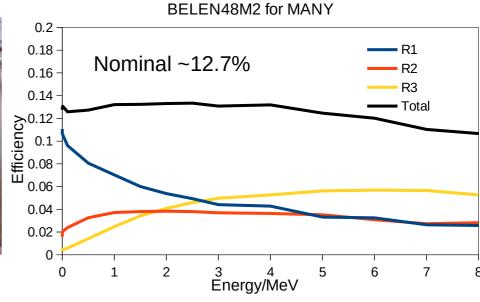

Do we need to wait until 2022?


E_low = 100 keV							
E_up/MeV	1	2	3	4	5		
Average_eff	6.50%	6.53%	6.46%	6.40%	6.26%		
Flatness	1.08	1.09	1.1	1.13	1.31		
Max_eff	6.73%	6.75%	6.75%	6.75%	6.75%		
Min_eff	6.21%	6.21%	6.11%	5.97%	5.16%		
Delta_eff	0.52%	0.54%	0.64%	0.78%	1.59%		

MiniBELEN for MANY


- + Highly modular HDPE moderator
- + Moderator central hole 7x7cm2
- + 12 3He-filled detectors
- + Two "efective" rings at 7cm and 14.87cm
- + Design compatible for use of a HPGe detector (IEM).
- + Cadmium and 3He counters (R2, R3) used to compensate over efficiency at lower energies.
- + Minor effort to prepare the detector!
- + Available at UPC. Experiments from
- ~March 2020.





BELEN48 for MANY

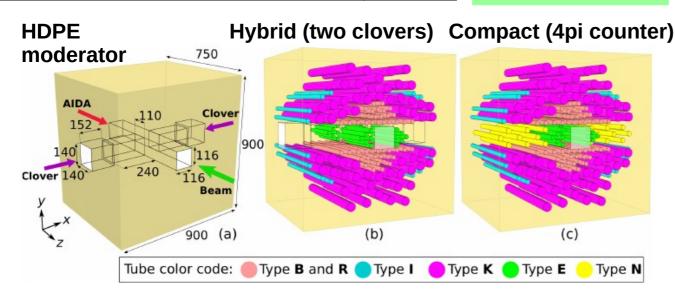
BELEN48M2 for MANY

- + HDPE moderator 50x50x80cm2
- + Moderator central hole 6cm diam.
- + Adapted to use 16 from 48 3He-filled detectors.
- + Cadmium filter used to compensate over efficiency at lower energies.
- + Minor effort to prepare the detector!
- + Available at IFIC. Experiments from
- ~March 2020.

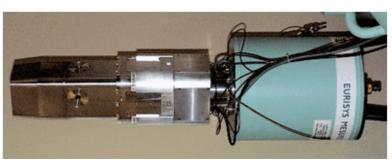
E_low = 100 keV							
E_up/MeV	1	3	4	6	8		
Average_eff	12.84%	13.07%	13.02%	12.75%	12.57%		
Flatness	1.05	1.06	1.07	1.21	1.25		
Max_eff	13.22%	13.35%	13.35%	13.35%	13.35%		
Min_eff	12.58%	12.58%	12.46%	11.03%	10.67%		
Delta_eff	0.64%	0.77%	0.89%	2.32%	2.68%		

Remarks

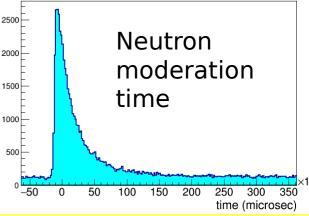
- Measurement program of (alpha,n) reactions can be achieved with BELEN detectors.
- Adapted detectors MiniBELEN (6.4% up to 5MeV) and BELEN48 (12.7% up to 8MeV) can be used in the short time. ~March 2020!
- A dedicated detection system is under development. A preliminary optimization study shows that 20% efficiency up to 15MeV will be possible with ~60 3Hetubes.
- Impact of angular distribution on the detector design required.
- Feedback from the low background community is welcomed in order to adapt the detection system to specific requirements.

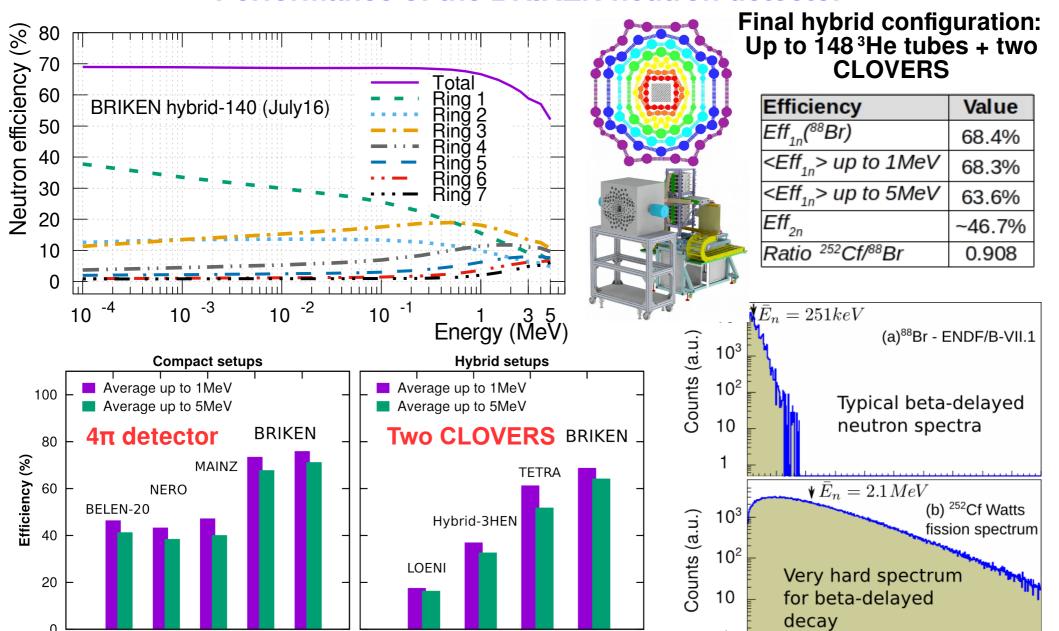

Thanks!


BACKUP


The BRIKEN neutron counter

Туре	Owner group	(incn/cm)	Eff. Length (inch/mm)	Total counters
BR	UPC + GSI	1 / 2.54	23.62 / 600	52
	ORNL	1 / 2.54	24 / 609.6	17
K	ORNL	2 / 2.54	24 / 609.6	64
Е	RIKEN	1 / 2.54	118.1 / 300	26
N	JINR	1.18 / 3	~ 18.9 / 48	20
	179			


Topological Monte Carlo optimization Algorithm developed @UPC/IFIC



Two clovers (HPGe)
CARDS array type
~1% @ 1.33 MeV (BRIKEN)
UTK/ORNL

Tarifeño-Saldivia+, JINST 12 (2017) P04006

Performance of the BRIKEN neutron detector

80

Number of tubes

148

20

64

Number of tubes

148

166

18

3 4 5 6 7 Energy (MeV)