

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

Detectors, Shielding and (α,n) Background in the CRESST Dark Matter Search

Alexander Fuss for the CRESST Collaboration

(α,n) yield in low background experiments 21-22 November 2019, CIEMAT, Madrid

CRESST Detectors

Shielding used in CRESST

 \succ Background Simulation with focus on possible (α ,n) contribution

CRESST Detectors

Detector design optimized for **low-mass dark matter search**:

- Small cuboid crystals (20x20x10) mm³ \rightarrow mass: ~24 g
- Nuclear recoil energy threshold < 100 eV
- Low background rate in region of interest (ROI: threshold to ~16 keV) \rightarrow ~4 6 dru
- Veto against surface related background (scintillating housing + instrumented sticks)

HEPHY Detection Principle – 2-Channel Read-Out

- Cryogenic operation at ~15 mK
- Phonon + scintillation light signal simultaneously read out with TESs
- Particle discrimination via ratio between light and phonon signal

First CRESST-III Results

Detector A (data taking: 10/2016 – 01/2018):

10

Injected Energy (keV)

- Target crystal mass:
- Nuclear recoil threshold:
- Gross exposure:

0.1

5.689 kg days

1

CRESST Shielding Structure

INSTITUTE OF HIGH ENERGY PHYSICS

Background Simulations – Geant4

- A dedicated simulation code based on Geant4 has been developed
- The shielding geometry has been implemented (up to necessary levels of detail)

• An electromagnetic background model has been developed for the lowest-background module (TUM40) of CRESST-II

- Neutron background studies were done for past shielding configurations
- Neutron studies for current shielding and detector design are ongoing
- All sources are taken into account (ambient, radiogenic, μ-induced)
- For radiogenic neutrons, we use the SOURCES4C code
 - Radiogenic neutrons include those produced in (α,n) reactions as well as those produced through spontaneous fission reactions

- In 2016, we did a comparison of a real and a simulated (Geant4.10.2.1) AmBe neutron spectrum
- The simulated spectra did not match the measured spectrum for any simulated configuration:

- Conclusion: Geant4.10.2.1 does not simulate (α,n) reactions reliably
- We hence use **SOURCES4C to attain (α,n) neutrons** (as well as s.f. neutrons)

Radiogenic Neutrons – SOURCES4C

Radiogenic neutron spectrum due to SOURCES4C (spontaneous fission + (α, n))

- PE: 9.368 · 10⁻¹² n / (cm³ s)
- Cu: 6.607 · 10⁻¹³ n / (cm³ s)
- Pb: 1.249 · 10⁻¹³ n / (cm³ s)
- Steel: 2.995 · 10⁻¹² n / (cm³ s)

• As a first approach, contamination levels measured by other rare event search experiments were considered

	Reference val CUORE and X	ues from c. ENON: D.	Alduino et al., JINST 11 Aprile et al., Astroparti R. Artusa et al., Eur. Ph	. 07 (2016), P07009 cle Physics 35 2 (2011 <u>)</u> lys. J. C74 (2014), p. 309	1), p. 43 8096
	Material	²³⁸ U [mBq/kg]	²³⁵ U [mBq/kg]	²³² Th [mBq/kg]	
1	Cu	< 0.065	_	< 0.002	
	PE	< 3.8	< 0.37	< 0.14	
	Pb	< 0.01	-	< 0.07	
	Steel	< 0.2	_	< 0.1	

- Currently, screening of our materials is ongoing to characterize new batches and improve sensitivity of old measurements
- Next step: simulations using our screening results

Radiogenic Neutrons – SOURCES4C

Radiogenic neutron spectrum due to SOURCES4C (spontaneous fission + (α, n))

Radiogenic Neutron Simulation

Simulation of homogeneous contamination in inner PE

Detected events originating from radiogenic neutrons produced in the inner PE shields

Radiogenic Neutrons – Background

Total nuclear recoil background due to radiogenic neutrons

- With assumed contamination levels, the inner PE shields actually contribute most to the radiogenic neutron background
- \succ But: expected radiogenic neutron background is very low \rightarrow O(10⁻² kg⁻¹yr⁻¹)

- CRESST has a well-shielded setup and highly sensitive detectors for low-mass Dark Matter search
- Screening measurements and simulations for developing and improving background models are ongoing
- (α,n) reactions are not supposed to give a high contribution to our background, but a precise knowledge of the processes is necessary for a precise neutron background model

Thank you for your attention!

"You're entitled to say, if you're so smart, why don't you tell me what that dark matter is? And I'll have to confess I don't know" – Jim Peebles

Additional Material

Radiogenic Neutrons – SOURCES4C

Radiogenic neutrons due to intrinsic contamination in CaWO4,

taking contamination levels of TUM40 as reference:

CRESST Shielding Material Contamination Levels

Material	²³⁸ U [mBq/kg]	²³⁵ U [mBq/kg]	²³² Th [mBq/kg]
Cu (Cryostat + Detector Holders)	< 0.02	< 0.05	< 0.021
Outer PE	52.66	infelli	43.55
Inner PE	1.0 ± 0.1	< 0.28	0.3 ± 0.1
Pb	< 2.85	_	< 0.91

This is not meant to be a complete list of our screening measurements (e.g. not listed are crystals and scintillating foils)

ICP-MS and NAA of new batch of Cu currently ongoing