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Outline

➢ CRESST Detectors

➢ Shielding used in CRESST

➢ Background Simulation with focus on possible (α,n) contribution
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CRESST
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The CRESST Collaboration

Searching for Dark Matter (DM) 
via direct detection



CRESST Detectors
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Reflective and scintillating housing

Target crystal (with TES)

Light detector (with TES)

CaWO4 sticks (possibly instrumented with TES)
(+ holding clamps)

Detector design optimized for low-mass dark matter search:
• Small cuboid crystals (20x20x10) mm3 

→mass: ~24 g
• Nuclear recoil energy threshold < 100 eV
• Low background rate in region of interest (ROI: threshold to ~16 keV) → ~4 – 6 dru
• Veto against surface related background (scintillating housing + instrumented sticks)



Detection Principle – 2-Channel Read-Out

• Cryogenic operation at ~15 mK

• Phonon + scintillation light signal
simultaneously read out with TESs

• Particle discrimination via ratio
between light and phonon signal
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First CRESST-III Results

Detector A (data taking: 10/2016 – 01/2018):

• Target crystal mass: 23.6 g

• Nuclear recoil threshold: 30.1 eV

• Gross exposure: 5.689 kg days
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arxiv:1904.00498



CRESST Shielding Structure
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Min. 45 cm polyethylene (PE)

Min. 20 cm Pb

Min. 14 cm Cu

Active muon veto

Radon Box

Located at the LNGS Underground Laboratory
~3600 m.w.e. rock overburden



CRESST Shielding Structure

21.11.2019 (α,n) Workshop Madrid | Alexander Fuss 8

Additional inner PE shield directly outside 
and inside the OVC of the cryostat since 2012



Background Simulations – Geant4
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Simulated Geometry

Whole Setup Cryostat Cavity (Cryoshields + Carousel)

Front View Top View

• A dedicated
simulation code 
based on Geant4 
has been
developed

• The shielding 
geometry has 
been implemented
(up to necessary
levels of detail)



Electromagnetic Background Model

• An electromagnetic background model has been developed for the
lowest-background module (TUM40) of CRESST-II
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(MC / Data)1-40 keV ≤ (68 ± 16) %

Eur. Phys. J. C (2019) 79: 881

TUM40 
schematic design



Neutron Background Model

• Neutron background studies were done for past shielding configurations

• Neutron studies for current shielding and detector design are ongoing

• All sources are taken into account (ambient, radiogenic, µ-induced)

• For radiogenic neutrons, we use the SOURCES4C code
• Radiogenic neutrons include those produced in (α,n) reactions as well as those

produced through spontaneous fission reactions
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(α,n) Study
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• In 2016, we did a comparison of a real and a simulated (Geant4.10.2.1) AmBe neutron spectrum
• The simulated spectra did not match the measured spectrum for any simulated configuration:

Using pure 9Be base material Using BeO base material
Using pure 9Be base material 

+ ParticleHP model

• Conclusion: Geant4.10.2.1 does not simulate (α,n) reactions reliably
• We hence use SOURCES4C to attain (α,n) neutrons (as well as s.f. neutrons)



Radiogenic Neutrons – SOURCES4C
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Radiogenic neutron spectrum due to 
SOURCES4C (spontaneous fission + (α,n))

• PE: 9.368 · 10-12 n / (cm3 s)
• Cu: 6.607 · 10-13 n / (cm3 s)
• Pb: 1.249 · 10-13 n / (cm3 s)
• Steel: 2.995 · 10-12 n / (cm3 s)

Material
238U

[mBq/kg]

235U
[mBq/kg]

232Th
[mBq/kg]

Cu < 0.065 – < 0.002

PE < 3.8 < 0.37 < 0.14

Pb < 0.01 – < 0.07

Steel < 0.2 – < 0.1

Reference values from 
CUORE and XENON:

C. Alduino et al., JINST 11 07 (2016), P07009
E. Aprile et al., Astroparticle Physics 35 2 (2011), p. 43
D. R. Artusa et al., Eur. Phys. J. C74 (2014), p. 3096

• As a first approach, contamination levels measured by
other rare event search experiments were considered

• Currently, screening of our materials is ongoing to 
characterize new batches and improve sensitivity of 
old measurements

• Next step: simulations using our screening results

neutron energy (MeV)



Radiogenic Neutrons – SOURCES4C
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• PE: 9.368 · 10-12 n / (cm3 s)
• Cu: 6.607 · 10-13 n / (cm3 s)
• Pb: 1.249 · 10-13 n / (cm3 s)
• Steel: 2.995 · 10-12 n / (cm3 s)

Radiogenic neutron spectrum due to 
SOURCES4C (spontaneous fission + (α,n))

neutron energy (MeV)

neutron energy (MeV) neutron energy (MeV)

neutron energy (MeV) neutron energy (MeV)



Radiogenic Neutron Simulation
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Simulation of homogeneous
contamination in inner PE

Detected events originating from radiogenic neutrons
produced in the inner PE shields

Energy (keV) Energy (keV)



Radiogenic Neutrons – Background
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➢ With assumed contamination levels, the inner PE shields actually contribute most to 
the radiogenic neutron background

➢ But: expected radiogenic neutron background is very low→ O(10-2 kg-1yr-1)

Total nuclear recoil
background due to 

radiogenic neutrons

Energy (keV)



Summary

• CRESST has a well-shielded setup and highly sensitive detectors 
for low-mass Dark Matter search

• Screening measurements and simulations for developing and 
improving background models are ongoing

• (α,n) reactions are not supposed to give a high contribution to 
our background, but a precise knowledge of the processes is
necessary for a precise neutron background model
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Thank you for your attention!

“You're entitled to say, if you're so smart, why 
don't you tell me what that dark matter is? And 
I'll have to confess I don't know” – Jim Peebles
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Additional Material
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Radiogenic Neutrons – SOURCES4C
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Radiogenic neutrons due to intrinsic contamination in CaWO4,
taking contamination levels of TUM40 as reference:

Material
238U

[mBq/kg]

235U
[mBq/kg]

232Th
[mBq/kg]

CaWO4 1.073 0.045 0.011

1.003 · 10-11 n / (cm3 s)

neutron energy (MeV)



CRESST Screening Measurements
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Material
238U

[mBq/kg]

235U
[mBq/kg]

232Th
[mBq/kg]

Cu (Cryostat + 
Detector Holders)

< 0.02 < 0.05 < 0.021

Outer PE 52.66 – 43.55

Inner PE 1.0 ± 0.1 < 0.28 0.3 ± 0.1

Pb < 2.85 – < 0.91

CRESST Shielding Material Contamination Levels

ICP-MS and NAA of new batch of Cu currently ongoing

This is not meant to be a complete list of our screening measurements
(e.g. not listed are crystals and scintillating foils)


