STATUS OF THE HIGH CURRENT INJECTOR PROGRAMME AT IUAC, NEW DELHI, INDIA

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

G.RODRIGUES IN

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

- Brief summary of the operating accelerators at IUAC
- Limitations and proposed upgrade
- Development of the High Current Injector
- Commissioning stages and present status
- Existing problems and bottle necks
 - Future developments and Conclusions

Schematic of the ECRIS based <u>High Current Injector</u> (HCI) with respect to the present Tandem Accelerator-<u>Superconducting Lin</u>ear <u>Ac</u>celerator (SC-LINAC)

Superconducting LINAC at IUAC

At the heart of the Superconducting LINAC at IUAC is a Niobium Quarter Wave Resonator (QWR) that accelerates the ion beam to high energies. The QWR operates at 97 MHz frequency.

15 UD Tandem Pelletron Accelerator and Superconducting Linear Accelerator (SC LINAC)

Quarter Wave Resonator: β=0.08; the operating temp. is 4.2 K

G.RODRIGUES

6

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

SC LINAC Modules

7

The Superconducting LINAC at IUAC. It has been in operation for the past several years and experiments are being done regularly using this facility.

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Inside View of the Module

The inside of a LINAC Cryomodule at IUAC. Each Module has eight QWRs and a superconducting solenoid magnet to focus the ion beams.

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

HCI + SC LINAC Energy Gain

Energy Gain (left) and Energy per nucleon (right) as a function of ion mass for the High Current Injector (HCI) + Superconducting Linac, and High Current Injector + Low beta Module (LBM) + Superconducting Linac. A foil stripper is assumed between HCI and LBM in both the cases. The calculations are done with the Low Beta Resonators in the LBM operating at 6 MV/m accelerating gradient and the QWRs in the SC Linac at 3.5 MV/m accelerating gradient.

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

High Current Injector Programme

Schematic layout of the High Current Injector

LAYOUT OF HIGH CURRENT INJECTOR (HCI) BEAMLINE

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

1/27/2021

- 20K

• 35K

+ 64K

70K

◆ 77K

Richard McMahon, Stephen Harrison, Steve Milward, John Ross, Robin Stafford Allen, Claude Bieth, Said Kantas and Gerry Rodrigues, IEEE Transactions on Applied Superconductivity, Vol.14, No.2, June 2004

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

SPECIFICATIONS OF THE 18 GHz HTS ECR ION SOURCE

15

-	HTS coils operational temperature :	22 K (Coil former @ 20 K)
-/	Cryo-coolers:	Cooled using chillers
-	Cryostat vacuum (INJ & EXT):	2 x 10 ⁻⁶ mbar
	Maximum axial field at injection:	1.8 T
-	Maximum axial field at extraction:	1.5 T
-	Multipole:	36 sector Hexapole ('Halbach' configuration)
-	RF injection:	transverse to co-axial coupling
•	Plasma chamber:	multi-mode cavity
-	RF generator :	Klystron 1.7 kW, air cooled
	Multi-electrode extraction	
	Extraction voltage:	Maximum 30 kV
-	Gas injection, oven, sputter probe	
-	Negative DC bias probe:	Maximum – 1 kV
-	Base injection vacuum:	7 x 10 ⁻⁸ mbar
	Base extraction vacuum:	3 x 10 ⁻⁸ mbar

C. Bieth, S. Kantas , P. Sortais, D. Kanjilal , G. Rodrigues , S. Milward , S. Harrison , R. Mc Mahon, Nucl.Instrum.Methods. B 235 (2005) 498

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

View of the 18 GHz HTS ECR ion Source

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

View of the 18 GHz HTS ECR ion Source coupled to the LEBT

Large acceptance, 3rd order corrected analysing magnet

G.RODRIGUES

Magnetic quad. singlet

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

BEAMS EXTRACTED FROM THE 18 GHz HTS ECR ION SOURCE

18 ION	A/Q = 6	A/Q = 7	A/Q = 8	$\mathbf{A}/\mathbf{Q}=9$
¹² C	Q=2+, I > 2 mA 2 mA			
¹⁶ O			Q=2+, I ≥ 2 mA 2.037 mA	
²⁰ Ne		Q=3+, I > 1mA 1.533 mA		Q=2+, I ≥ 2 mA 2.044 mA
⁴⁰ Ar	Q=7+, I ≥ 600 μA 600 μA			Q=4+, I ≥ 1 mA 1.023 mA
¹²⁹ Xe	Q=21+, I ≥ 20 μA 28 μA			Q=14+,I ≥ 150 μA 157 μA
¹⁸⁰ Ta		Q=25+,26+, I \geq 25 μ A 27 μ A		Q=20+, I ≥ 30 μA 65 μA
¹⁹⁷ Au		Q=28+, I \geq 10 μ A 10 μ A		Q=21+, I ≥ 15 μA 28 μA
²⁰⁸ Pb		Q=29+, I \geq 12 μ A 12 μ A		Q=21+, I ≥ 15 µA 65 µA
N N	G.RODRIGUES INT	FR UNIVERSITY ACCELERATOR CENTRE.	NEW DELHL INDIA	1/27/2021

Proximity of beam hall III and beam hall I

Transverse and longitudinal optics before RFQ using a Multi-Harmonic Buncher

20

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Multiparticle TRACK simulation upto entrance of DTL

21

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Bunching using the 12.125 MHz Multi Harmonic Buncher

23

CRITERIA FOR BEAM BUNCHING **OPERATION AND MEASUREMENTS**

1. The ion beam should have a sharp waist in transverse background signal were minimized by averaging dimension at the RF gap formed by the grids of the buncher.

2. The electric field must be uniform across the pair of grids forming the RF gap.

must be minimum for proper bunching.

4. The bunching grids, tank circuit coils, and RF amplifier should be water cooled for continuous operation to avoid any temperature related drifts.

5. The saw-tooth voltage responsible for bunching must be for smooth operation. stable in ferms of amplitude and phase. This is ensured by monitoring the pick-up signal triggered by the master clock.

6. The beam hall environment should be noise free in order to measure the beam bunches on CRO using the amplified yield much better results. signal from the fast faraday cup.

PROBLEMS ENCOUNTERED

1. The FFC signal for measuring bunch width was very sensitive to any noise and RF pick-up. The over 50 – 100 samples for stable measurements.

2. The pre-amplifier coupled to the FFC is also very sensitive and prone to damage for any RF pickups. It was thus turned off whenever RFQ was on. 3. The energy spread of the beam from the ECR source The measurement of beam bunches were made only when RFQ was off.

> 3. For cooling of the grids and tank circuit coils, the flow and temperature of the de-ionised water cooling system had to be maintained accurately

> 4. All the bunched width measurements were done on a 500 MHz oscilloscope. Measurements of FFC timing signals on 4 - 6 GHz oscilloscope would

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Bunched widths of various beams

Bunched Spectrum of Ne⁸⁺

Bunched spectrum of N⁵⁺

JES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

48.5 MHz RADIO FREQUENCY QUADRUPOLE

RFQ type	Rod
Frequency	48.5 MHz
Design A/q	<= 6
Input design energy	8 keV/u
Output design energy	180 keV/u
Total Length (without	2.536 m
buncher)	
Transmission	> 90 %

Layout to test the Energy gain through RFQ

Test of Energy gain through the RFQ cavity

27

- A Gaussian fit to the distribution gives an final energy of ${}^{16}O^{5+}$, 180.5 keV with an energy spread of FWHM of 4.97 keV (3 mm slit at object and image planes)
- Spiral Buncher and DTL cavities were operated in 'drift' mode and the bunch width after the RFQ could not be measured due to lack of a time diagnostic.

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

ACCELERATION TESTS OF VARIOUS BEAM THROUGH THE RFQ

28

Beam	A/q	E _{in} (keV)	E _{out} (keV)	Cavity Pickup (mV)	Peak Power (kW)
He ²⁺	2.0	32	707 ± 3.0	38.2	13.2
Ne ⁸⁺	2.5	160	3640 ± 2.8	43.0	18.0
O ⁶⁺	2.67	128	2896 ± 2.7	43.5	18.3
N ⁵⁺	2.8	112	2520 ± 2.5	44.8	19.2

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

48.5 MHz SPIRAL BUNCHER (MEBT SECTION)

29

- MEBT spiral buncher cavity has been designed, developed, characterized, tested, and commissioned in the HCI beamline. High Vacuum of ~low 10⁻⁷ mbar was achieved.
- The buncher cavity has been powered several times more than its design value to check it's stability at high-power.
- The cavity was tested with various ion beams to validate it's electrical design.
- The transmission has been improved be a factor of ~ two, when MEBT spiral buncher cavity was on (old beamline).
- Beam testing continues in the new beamline, transmission further improved using the tuning of spiral buncher.

Spiral Buncher cavity installed in the MEBT Section of the HCI

	Ion Beam	Before Spiral	After Spiral	Comments	
 Ne ⁺⁸		2.3 nA	4.3 nA	(Old Beamline) Current became almost double when	
		2.1 nA	4.4 nA	the spiral buncher kept on	
	Ion Beam	After RFQ	After DTL	Comments	
	N ⁺⁵	1300 nA	460 nA	(New Beamline) Transmission has been increased by a	Beam Test
		1500 nA	650 nA	factor of ~two by tuning the spiral buencher.	<u>Results</u>

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Layout of components for testing the first DTL cavity

Beam optics for RFQ--SB--DTL-1 with provision DTL-2 Layout beam test

RFQ--SB--DTL-1 with provision DTL-2 Layout beam test

Test of Energy gain through the first DTL cavity

spiral buncher was put initially in "drift" mode

- DC beam of Ne⁸⁺ (8 keV/u) was accelerated through the RFQ with an energy gain of 3.76 MeV (188 keV/u, slightly higher)
- Further accelerated by the DTL to an energy of 6.962 MeV (348 keV/u).
- To test the spiral buncher together with the DTL cavity, a 2.42 ns bunched beam of Ne⁸⁺ was accelerated by the RFQ to 3.949 MeV and further bunched using the spiral buncher.

The final acceleration through the DTL cavity was determined to be 7.148 MeV.

Views of the system in Beam Hall 3 at different times

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Test of Energy gain through the second DTL cavity

- All cavities following the second cavity were in "drift" mode
- All miniature quadrupole triplets were used to transport the beam and analyzed using the first Achromat
- Energy gain from second cavity of DTL was determined using the Achromat to be 234 keV/u in "Energy Dispersive Mode"
- Maximum bunched beam transmission from RFQ exit to the first Achromat 36 %

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

Beam tuning and diagnosis

- 37
- DC transmission of 20 % and bunched beam transmission was 32
 % after RFQ in old configuration
- A maximum DC beam transmission of 25% and 36% transmission for bunched beam were achieved through RFQ by analysing using the first achromat in new configuration.
- It is likely that some dedicated diagnostics at close to the entrance of RFQ and all along the downstream of RFQ and DTL may help to further improve the beam tuning and overall transmission.
 - Beam tuning has been rigorous and time consuming due to enormous amount of active elements. However, a lot of effort has been put in, especially to study the optics and scale from the predicted values
 - Repeatibility of beam tuning is important

Future plans and Goals

38

- Commissioning of time diagnostic devices for ease of beam tuning and improvement of beam transmission before injection into SC-LINAC
- Acceleration tests of following DTL cavitie
- Foil/gas stripping tests before injection into SC-LINAC

39

Thank You for your Kind Attention

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

ELECTRICAL DESIGN PARAMETERS OF 6 DTL CAVITIES

40

#	Length	Egain	Vz(Lana)MV	Vz (MWS)MV	Ppeak(KW)	Ez^2/P	Vratio	Ppeak(KW)/2
1	38.7	0.137	0.971	3.361	109	103	0.092	5
2	69.3	0.234	1.758	3.587	83	155	0.265	11
3	89.6	0.312	2.318	3.450	74	161	0.498	18
4	93.6	.276	2.045	2.984	68	130	0.518	18
5	91.7	.344	2.453	3.074	67	142	0.702	24
6	82	.336	2.202	2.688	67	107	0.740	25

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

DTL CAVITIES : BEAM PULL & HIGH POWER TESTS

COMPACT BEAM DIAGNOSTIC SYSTEM (used between the DTL cavities)

G.RODRIGUES

INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

TRACK simulation of the longitudinal phase space at the <u>entrance</u> and <u>exit</u> of the RFQ situated 4.0 m downstream from the multi-harmonic buncher

Injector stability

43

ΔV	$\Delta \phi$	βλ
$\overline{V} =$	π	$\overline{hL_{\text{drift}}}$

Entrance of the RFQ

Exit of the RFQ

Calculated from formula \rightarrow Phase spread +/- 25.6° From TRACK simulation \rightarrow +/- 22.5°

•For the heaviest ion measured, Vp ~ 40 V @ 20 kV

•Energy spread is 0.11 %

•16 % loss in transmission through RFQ besides 15 % loss through MHB due to grids (from TRACK)

G.Rodrigues, R.Baskaran, S.Kukrety, Y.Mathur, Sarvesh Kumar, A.Mandal, D.Kanjilal and A.Roy, Rev.Sci.Instrum. 83, p.033301 (2012)

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

44

HYPERNANOGAN 180 kW PKDELIS 15 kW

G.RODRIGUES INTER UNIVERSITY ACCELERATOR CENTRE, NEW DELHI, INDIA

47

RF parameters	Designed Value	Simulated	Experiment
Resonance Frequency (f0)	48.5 MHz	-	44.12
Quality Factor (Q)	-	-	5524
Shunt impedance (Rsh)	-	90k-ohm	87k-ohm
Power Required (Pin)	-	-	80kW/m

G.RODRIGUES

48