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Disclaimer
LINAC4 test bed for advanced algorithms during CERN Long 
Shutdown 2 (2019/20)


But: limited time due to commissioning tasks.


 many tests carried out at other facility:  line of AWAKE. 

★ AWAKE: proton-driven plasma wakefield test facility.


★  line: 20 MeV RF station, ~ 15 m transport to plasma cell


★ AWAKE R&D program for advanced algorithms

→ e−

e−

Courtesy A. Scheinker
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Motivation
Our goal for accelerator operation: maximum efficiency and maximum flexibility 
while achieving maximum performance


  physics based deterministic operation of accelerators, no trial and error. 


 = classical control (albeit not standard approach yet either)


Not always possible:

★ need models, and models online available; models can be very complicated


✴ LINAC modelling not supported directly by current implementation in CERN control system 


★ there are drifts  modelling even more complicated


★ need sufficient beam instrumentation


★ need algorithms on top of models; models not always easily invertible


One way out  automated and sample-efficient numerical optimisation 

→

→

→

→
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Reinforcement Learning (RL)
Numerical optimisation needs exploration phase at each 
deployment. 


With RL (after training) exploration phase is reduced to a 
minimum  one iteration in the best case.


The reason: 

★ it learns underlying dynamics of the problem 

★ but needs additional input: state information

✴ Given the state, it applies the action to achieve maximum reward  

 Controllers like with model-predictive control. 

→

→
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No reinventing the wheel
 exploit results from python based scientific and industrial community.


CERN has python interface to accelerator control system: pyjapc 

depend on: scipy, pymoo, py-bobyqa,… for numerical optimisation. 


depend on: spinningup and standard-baselines for RL


Key component for algorithm development and comparing algorithms: 

★ decision to implement all our problems as OpenAI Gym environments for RL.


★ extended to also cover numerical optimisation at CERN: SingleOptimizable, 
FunctionOptimizable, OptEnv 


★   separation of domain specific knowledge in problems by clients from algorithms 
and GUI


✴ Easier algorithm development, easy to switch algorithm for one problem

→

→
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Plug & Play Optimisation for the control room

GUI for control room based on principles above.


Choice of problems (i.e. environments), choice of algorithms
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Plug & Play Optimisation for the control room

Investigated OCELOT:  https://github.com/ocelot-collab/ocelot

★ Used by several labs across world. 


★ Optimisation tools developed by European XFEL, DESY and SLAC


★ More than just numerical optimisation tool: multi-physics software 
toolkit

✴ also provides modelling and simulation; comes with GUI,…


Nelder-Mead optimisation of  
trajectory at LINAC4 with 5  
correctors in H

not directly fulfilling our use case 
 collaboration to define common  

interface based on concept of  
OpenAI Gym

→
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Numerical Optimisation
Many numerical optimisation algorithms available.


Use mainly: Derivative-Free Optimisation or Black Box 
Optimisation  Model Unaware Algorithms

★ model does not have to be available


★ least investment necessary upfront


Not all derivative-free algorithms suitable for all optimisation 
problems. 

★ Is problem convex? Need Bounds or constraints? What about noise?


Our favourites: COBYLA, BOBYQA 

Next: provide for Bayesian Optimisation 

≡
Task: 
solve ⃗x0 = argmin f( ⃗x )
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Examples @ LINAC4
Examples for online numerical optimisation @ LINAC4

★ Trajectory steering in LINAC, 16 degrees of freedom; COBYLA 

★ Chopping efficiency optimisation with constraints; COBYLA

Vacuum readings before chopper dump  
as BLMs  constraint for minimising 
pulse shape error while adjusting 6 
quadrupoles 

→
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Basics of Reinforcement Learning
RL: learning how to act given a certain state to maximise 
cumulative reward.


Simple example: trajectory steering


Reward  could be:  
• intensity on target

• RMS of trajectory 

• losses 

r

× (−1)
× (−1)

State  :  
• reading of BPMs

s

Action  :  
• dipole corrector settings

a

Partly from course “Deep Reinforcement Learning”, Sergey Levine
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Sample efficiency
How many interactions does RL algorithm need until it has learned the optimal 
policy/ -function/…?


Machine time is expensive. Some algorithms are excluded on the machine 
(PPO,…)


 because of algorithm simplicity started with: -learning and Actor-critic  
methods


 then moved to model-based RL: albeit only some methods studied so far 

Q

→ Q

→

From course “Deep Reinforcement Learning”, Sergey Levine
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Model-free RL test bed 2019 
AWAKE  line and commissioning run of  LINAC4


Initial test cases on AWAKE and later for LINAC4: trajectory correction 
★ ideal test case 


★ well defined state 


★ high dimensional action and state space


★ can compare with existing algorithms and can solve the problem analytically.


Goal: train controller that corrects as well as SVD  similar RMS and 
ideally within 1 iteration. 

Implemented NAF arXiv: 1603.00748 with Prioritised Experience Replay:  
arXiv:1511.05952

Also used DDPG variant TD3 from package stable-baselines 

e− H−

s

→
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Model-free online learning for AWAKE 
trajectory steering

Proof-of-principle: learn how to steer AWAKE  - line in H 


Q-learning with very sample-efficient NAF algorithm


e−

After some training the agent corrects any 
initial steering to below target RMS  within 

1 or 2 iterations

Problem with 
10 DOF
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Other example with NAF: agent for LINAC4 steering

17 BPMs and actions possible on 16 correctors, through DTL, CCDTL, 
PIMS and start of the transfer line in the horizontal plane 
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Other example with NAF: agent for LINAC4 steering 

Inexpensive way of learning any (also non-linear) response and 
solve control problem. 

16 DOF
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How often does one have to re-train?
Depends in general on 

★ the problem: e.g. trajectory steering will need re-training if lattice is changed. No difference to SVD.


★ hidden state information


★ …


The training time of NAF on the examples shown is acceptable if training remains valid for a long time 
(e.g. a run)

★ ~ 300 iterations: ~ 30 minutes for AWAKE trajectory steering agent


★ Test in September 2020 of agent that was trained in June 2020. No degradation of correction performance


Agent trained on June 10

Validation September 22
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Train on simulation and apply on machine?
2 ways to circumvent the sample efficiency issue even further


 Model-based RL: learn explicitly the model and train agent at the same 
time; see this talk


 Train on simulation, apply on machine (transfer learning): 
typically relies on high level parameter control system 

→

→

AWAKE training on simulation for trajectory steering;  
validation of trained agent on machine

If simulation and 
machine not perfect 
match, 
could use “residual 
physics” 
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Model-based RL
Learn model of dynamics explicitly and use it to train agent, 
instead of machine directly. 


Many variants.


Used the DYNA-style MBRL (Sutton)


Dyna-Q algorithm:

Train dynamics model  
with supervised learning 

Train model-free agent

…Our code  is using stable-baselines model-free agents
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Model-predictive control: iLQR
What if go through the loop only once and use MPC?


iLQR on the dynamics model for AWAKE trajectory correction.  

Problem statement: Find corrector settings (10) to flatten trajectory from any 
initial trajectory (10 BPMs).      


Results with dynamics 
training on 200  
data points 

N. Bruchon et al.
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MB-RL performance
Repeated agent training for AWAKE trajectory steering.


For comparison: model-free training ~ 300 iterations

Model-based RL: 
Median ~ 80 data sets



LINAC4 beyond classical control, 25/01/2021

Concluding words
 Next step in efficiency, reproducibility and performance of our accelerators will include 
machine learning and other advanced algorithms

★ Algorithms for parameter tuning such as presented in this talk


★ But also ML for: forecasting (hysteresis correction,…), virtual diagnostics, de-noising, computer 
vision,…


These algorithms are mature enough now to really profit from them. 


Generic optimisation and Machine Learning framework: key ingredient for successful 
exploitation

★ We are working on it for the CERN complex. First version already available


★ Also includes storing and loading neural nets


LINAC4 was a test bed for some of the algorithm developments in 2019.

★Many potential applications; first one in the making: RL for dispersion free steering. 


Many CERN accelerators are planning ML tools for the coming start-up.
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Extra
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Model-based RL exploiting simulation

Only needed 15 data samples on machine.


Data: 2020_08_12_16_45_46

Agent training on surrogate, 

that was trained on simulation



LINAC4 beyond classical control, 25/01/2021

Comparison with other algorithms

Policy-gradient algorithm PPO 
versus NAF for AWAKE steering 
problem in simulation:

TD3 versus NAF for AWAKE steering 
problem in simulation: similar 
performance

  - learning much more sample efficient than policy gradient algorithms→ Q


