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Disclaimer )
LINAC4 test bed for advanced algorithms during CERN Long

Shutdown 2 (2019/20)

But: limited time due to commissioning tasks.

— many tests carried out at other facility: ¢ line of AWAKE.

% AWAKE: proton-driven plasma wakefield test facility.

% ¢ line: 20 MeV RF station, ~ 15 m transport to plasma cell

% AWAKE R&D program for advanced algorithms

Courtesy A. Scheinker feedback
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Motivation O

Our goal for accelerator operation: maximum efficiency and maximum flexibility
while achieving maximum performance

— physics based deterministic operation of accelerators, no trial and error.

— = classical control (albeit not standard approach yet either)

Not always possible:

% need models, and models online available; models can be very complicated

* LINAC modelling not supported directly by current implementation in CERN control system
% there are drifts = modelling even more complicated

% need sufficient beam instrumentation

% need algorithms on top of models; models not always easily invertible

One way out — automated and sample-efficient numerical optimisation

LINAC4 beyond classical control, 25/01/2021



Reinforcement Learning (RL) ()

Numerical optimisation needs exploration phase at each
deployment.

With RL (after training) exploration phase is reduced to a
minimum — one iteration in the best case.

The reason:
% it learns underlying dynamics of the problem

% but needs additional input: state information

* Given the state, it applies the action to achieve maximum reward

— Controllers like with model-predictive control.

LINAC4 beyond classical control, 25/01/2021



No reinventing the wheel ()

A

— exploit results from python based scientific and industrial community.

CERN has python interface to accelerator control system: pyjapc

depend on: scipy, pymoo, py-bobyga,... for numerical optimisation.

depend on: spinningup and standard-baselines for RL & OpenAI

Key component for algorithm development and comparing algorithms:
% decision to implement all our problems as OpenAl Gym environments for RL.

% extended to also cover numerical optimisation at CERN: SingleOptimizable,
FunctionOptimizable, OptEnv

% — separation of domain specific knowledge in problems by clients from algorithms
and GUI

* Easier algorithm development, easy to switch algorithm for one problem

LINAC4 beyond classical control, 25/01/2021



Plug & Play Optimisation for the control room

GUI for control room based on principles above.

Choice of problems (i.e. environments), choice of algorithms

— ] —
__main__.py (X __main__.py
View View
Machine: |Awake Objective and Constraints Actors Figure 1 Machine: |Awake Objective and Constraints Act Figure
Objective 1
LSA Cycles 0.32 LSA Cycles /\
1
03 08 f‘
0.28 ‘ [
0.6
0.26 \
0.24 0.4 “ \
0.22 |
0.2
0.2
Config 0.18 Config o “ } I‘ \
Environment: 0.16 Environment: \“ }\
AwakeSimEnvH-v0 0.14 AwakeSimEnvH-v0 -0.2 } \I ‘\ \
[ \
Configure 0.12 Configure \
-0.4 ‘
Show constraints 0.1 Show constraints | | |
—
Numerical optimisation algo: 0.08 Numerical optimisation algo: 0.6 [ “ ’ \
BobyQA 0.06 BobyQA ‘ ‘
-0.8 |
Configure 0.04 Configure | ‘ I
0.02 a V
Launch Reset 0 10 20 30 20 Launch Reset o 10 20 30 20
Log Console @ Log Console
2021-01-27 11:12:54,244 - acc_app_optimisation.gui.control_pane - INFO - optimization finished 2021-01-27 11:12:54,244 - acc_app_optimisation.gui.control_pan: INFO pt. t. finished

LINAC4 beyond classical

cernml.coi.SingleOptimizable

get_initial__params()
compute_single_objective()

optimization_space
objective_range
constraints

control, 25/01/2021




Plug & Play Optimisation for the control room e

/S

Investigated OCELOT: https://github.com/ocelot-collab/ocelot

% Used by several labs across world.
% Optimisation tools developed by European XFEL, DESY and SLAC

% More than just numerical optimisation tool: multi-physics software
toolkit

* also provides modelling and simulation; comes with GUI,...

Nelder-Mead optimisation of
trajectory at LINAC4 with 5
correctors in H

not directly fulfilling our use case

— collaboration to define common
interface based on concept of
OpenAl Gym
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Numerical Optimisation ()
Many numerical optimisation algorithms available.

Use mainly: Derivative-Free Optimisation or Black Box
Optimisation = Model Unaware Algorithms

% model does not have to be available Task:
solve X, = argmin f(X")

% least investment necessary upfront

Not all derivative-free algorithms suitable for all optimisation
problems.

% Is problem convex? Need Bounds or constraints? What about noise?

Our favourites: COBYLA, BOBYQA

Next: provide for Bayesian Optimisation

LINAC4 beyond classical control, 25/01/2021



Examples @ LINAC4 &N

N4

Examples for online numerical optimisation @ LINAC4
% Trajectory steering in LINAC, 16 degrees of freedom; COBYLA

% Chopping efficiency optimisation with constraints; COBYLA

objective COBYLA — L4LRQD.311

L4LRQD.331

i 10 —__//\/‘——————— —— L4LRQF.321

M actors e S — g

L4D.RCH.021 £ /\/7— WMM’ LALRQF 371
L4D.RCH.031 =

—— LAC.RCH.011
L —— L4C.RCH.031

1.0 e L —— L4C.RCH.051
e, L —— L4C.RCH.071

L4P.RCH.011

rms (mm)
-
N
w (=]
o ;
1
3
by
8
33

actors L4P.RCH.031 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 L4P.RCH.051 Number of iterations
—— L4P.RCH.071

—— LaP.RCH.001 Vacuum readings before chopper dump

L4P.RCH.111

— L4TRCH.011 as BLMs — constraint for minimising

—— L4T.RCH.0113

. — LTRenon pulse shape error while adjusting 6
quadrupoles

actors (arb. units)
o

0 20 40 60
no. iteration
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Basics of Reinforcement Learning (@

RL: learning how to act given a certain state to maximise

cumulative reward.

Simple example: trajectory steering

State s :
* reading of BPMs

Action a :
- dipole corrector settings

S; — st

reward

(RL AGENT

parameter 6

)
policy

action

- N
ENVIRONMENT

J

observation

{ CORRECTORS J

ate

0; — observation
a; — action

mg(as|oy) — policy

Reward r could be:
* intensity on target

- RMS of trajectory X (—1)
- losses X (—1)

mo(az|sy) — policy (fully observed)

p(Si41/st,ay)

Partly from course “Deep Reinforcement Learning”, Sergey Levine

LINAC4 beyond classical control, 25/01/

2021
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Sample efficiency &N

NS

How many interactions does RL algorithm need until it has learned the optimal
policy/Q-function/...?

off-policy » on-policy
More efficient Less efficient
(fewer samples) (more samples)
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

From course “Deep Reinforcement Learning”, Sergey Levine

Machine time is expensive. Some algorithms are excluded on the machine
(PPO,...)

— because of algorithm simplicity started with: OJ-learning and Actor-critic
methods

— then moved to model-based RL.: albeit only some methods studied so far

LINAC4 beyond classical control, 25/01/2021



Model-free RL test bed 2019 ()

ERN
AWAKE e~ line and commissioning run of H~ LINAC4

Initial test cases on AWAKE and later for LINAC4: trajectory correction

% ideal test case

% well defined state s
% high dimensional action and state space

% can compare with existing algorithms and can solve the problem analytically.

Goal: train controller that corrects as well as SVD — similar RMS and
ideally within 1 iteration.

Implemented NAF arXiv: 1603.00748 with Prioritised Experience Replay:
arXiv:1511.05952

Also used DDPG variant TD3 from package stable-baselines

LINAC4 beyond classical control, 25/01/2021



Model-free online learning for AWAKE ()
trajectory steering -

Proof-of-principle: learn how to steer AWAKE € - line in H

Q-learning with very sample-efficient NAF algorithm

2 40 After some training the agent corrects any
% initial steering to below target RMS within
2 501 rAJ 1 or 2 iterations
S
Problem with

0 25 50 75 100 125 150 175 200 10 DOF

0-01 __w‘m: A YV WA MLV AN iV ON
'c —0.51 {
S,
2-1.0 '! — final
cc initial
—1.51 ---- target
0 25 50 75 100 125 150 175 200

no. episode
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Other example with NAF: agent for LINAC4 steering C\@

/S

17 BPMs and actions possible on 16 correctors, through DTL, CCDTL,
PIMS and start of the transfer line in the horizontal plane

=\ Vertical step to connect to LT, LTB and Bl lines
2\ in Linac2/PS tunnel

Linac 4 .
Pre-injector
3 MeV
Cell-Coupled Source(s) @ 45 kV
L4T [1-mode Drift Tube Drift Tube Linac 2 solenoids
Structure Linac 50 MeV RFQ (1 Klystron)
160 MeV 100 MeVv 3 Tanks 11 EMQ
12 Modules 7 Modules 3 Klystrons 3 Buncher Cavities
6 Klystrons 6 Klystrons 1 EMQ 2 Chopper units
12 EMQ 7EMQ 2 steerers +dump
12 steerers 7 steerers 114 PMQ
23 m 14PMQ 19m
25m Source

Dump

extracted from: ST0055254_01
JP.Corso le 10.01.2019
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Other example with NAF: agent for LINAC4 steering C\E/RW

N4

Inexpensive way of learning any (also non-linear) response and
solve control problem.

15 f\
V)]
S
10+
5 16 DOF
-
2 _J U
0 20 40 60 80
_ Y
c
E -2
wn —— final
> C o
< _3] initial
---- target
0 20 40 60 80

no. episode
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How often does one have to re-train? ()

N,
Depends in general on
% the problem: e.g. trajectory steering will need re-training if lattice is changed. No difference to SVD.

% hidden state information

x ...

The training time of NAF on the examples shown is acceptabile if training remains valid for a long time
(e.g. arun)

% ~ 300 iterations: ~ 30 minutes for AWAKE trajectory steering agent

% Test in September 2020 of agent that was trained in June 2020. No degradation of correction performance

N
o

=
w1

no. iterations

=
o

Agent trained on June 10
Validation September 22

|
o
N

— final
initial
-- target

- RMS [cm]

|
o
>

0 5 10 15 20 25 30 35
no. episode
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Train on simulation and apply on machine? (C\ER@
2 ways to circumvent the sample efficiency issue even further

— Model-based RL.: learn expilicitly the model and train agent at the same
time; see this talk

— Train on simulation, apply on machine (transfer learning):
typically relies on high level parameter control system

AWAKE training on simulation for trajectory steering;
validation of trained agent on machine

2.0

15 If simulation and
* machine not perfect
1.0
0 10 20 30 40 matCh!

could use “residual
physics”

|
o
[N}

— final
initial
-- target

RMS [cm]

|
©
N

# episode
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Model-based RL O

Learn model of dynamics explicitly and use it to train agent,
instead of machine directly.

Many variants.
Used the DYNA-style MBRL (Sutton)

Dyna'Q a|gOrIthm Initialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)
Do forever:
(a) S < current (nonterminal) state
. . b) A < e-greedy(S, Q
Tr_aln dynan]lcs mOde! Ec)) Execute aCthI(l A; gbserve resultant reward, R, and state, S’
with supervised learning (d) Q(S, A) + Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]
(e) Model(S, A) < R, S’ (assuming deterministic environment)
(f) Repeat n times:

Train model-free agent

S <+ random previously observed state

A < random action previously taken in S

R,S’" < Model(S, A)

Q(S,A) + Q(S,A) + a[R + ymax, Q(5’,a) — Q(S, A)]

...0ur code is using stable-baselines model-free agents

LINAC4 beyond classical control, 25/01/2021



Model-predictive control: iLQR @

What if go through the loop only once and use MPC?

1. run base policy my(a¢|st) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(si, a;) — s}||?

3. plan through f(s,a) to choose actions

ILQR on the dynamics model for AWAKE trajectory correction.

Problem statement: Find corrector settings (10) to flatten trajectory from any
initial trajectory (10 BPMSs).

10 1 —8— steps per episode
8-
g 6-
s 4
Results with dynamics || e+ oo o
training on 200 1.00 : : T 6 [} i:itial perforn::nce N BrUChon et al.
data points : o) = ol perormance
S 0.0
g—os * e e 0 ._._° ®
cL—l.O T
0 2 4 6 8 10
# episode
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MB-RL performance &)

/S

Repeated agent training for AWAKE trajectory steering.

For comparison: model-free training ~ 300 iterations

----- median
Il scores

Model-based RL:
Median ~ 80 data sets

B0 e e

[@)]
o
1

machine data buffer length

40 A

20 A

# mbrl-dyna training runs
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Concluding words &N

Next step in efficiency, reproducibility and performance of our accelerators will include
machine learning and other advanced algorithms

% Algorithms for parameter tuning such as presented in this talk

% But also ML for: forecasting (hysteresis correction,...), virtual diagnostics, de-noising, computer
vision,...

These algorithms are mature enough now to really profit from them.

Generic optimisation and Machine Learning framework: key ingredient for successful
exploitation

% We are working on it for the CERN complex. First version already available

% Also includes storing and loading neural nets

LINAC4 was a test bed for some of the algorithm developments in 2019.

% Many potential applications; first one in the making: RL for dispersion free steering.

Many CERN accelerators are planning ML tools for the coming start-up.

LINAC4 beyond classical control, 25/01/2021



CER/W
\

Extra

LINAC4 beyond classical control, 25/01/2021



Model-based RL exploiting simulation @

Only needed 15 data samples on machine.

Data: 2020_08_12_16_45_46

121 Agent training on surrogate,
c 107 that was trained on simulation 012 ° ® °
[e] -0. 4
B 87 ¢
2 6
H#
47 ~0.14-
2 _ . °
T T T T T T g
0 20 40 60 80 100 = °
s —0.16 A °
o
-0.1- <’V”\..\/\f"\/\,\/,v/“\,/\/\,\r\~/\.l\p/\»/\ w"ﬁ"\/w—v\’\/’\/\, ' °
) °
o Wy J06 YD | ¥ AR (RO R 0 IS Y P R | Y TP AR 0 R | O O 1 R Y P N N L O A
E ~03 —-0.18
(%)}
= -0.4
© o5 — final ® testseriesO
..... target —0.20 4. ===+ target
-0.6 initial 0 2 4 6 8
0 20 40 60 80 100 # tests
# episode

LINAC4 beyond classical control, 25/01/2021



Comparison with other algorithms @

Policy-gradient algorithm PPO TD3 versus NAF for AWAKE steering
versus NAF for AWAKE steering problem in simulation: similar
problem in simulation: performance
-0.1 —
—-0.2 1 -0.2 A1
2 —0.41 s —04
% %—QS
2 2
2 —0.6 1 g
£ £ —0.6
) ) -0.7
—— ppo 087 43
naf 094 per-naf
6 10I00 20I00 30I00 40I00 50I00 160 260 360 4(I)0 560
no. episode no. episode

— ( - learning much more sample efficient than policy gradient algorithms

LINAC4 beyond classical control, 25/01/2021



