

UNIVERSITÄTS KLINIKUM HEIDELBERG

Analysis of Low and Medium Energy Beams at HIT

Rainer Cee, HIT GmbH

Experiences During Hadron LINAC Commissioning 25-29 January 2021

Co-Authors:

Ch. Dorn, A. Peters, J. Schreiner, T. Winkelmann, HIT GmbH O. Chubarov, A. Robin, SHC (Siemens Healthcare GmbH)

Outline

- Introduction
 - Medical Accelerator Overview
 - LINAC Beam Diagnostics
 - Profile Grid Measurement
 - Phase Probe Measurement Time-of-Flight
- Test Bench Common Test Bench of HIT and Siemens Healthcare
 - Overview
 - Recommissioning of the Siemens-Spare-RFQ
 - Pepper Pot Measurements

Profile Grid Measurement MEBT

HIT profile grid (LEBT+MEBT):

Specification

Supplier	GSI
Туре	SEM-grid
Wires (channels) per plane	64 (32)
Channel spacing	2.4 mm
Active area	80×80 mm ²

- Beam width and position is taken daily in the frame of a protocol
- Profile references are stored before maintenance periods

Control System Integration:

Phase Probe Measurement Time-of-Flight

/ (MeV/u)

Control System Integration:

Outline

- Introduction
 - Medical Accelerator Overview
 - LINAC Beam Diagnostics
 - Profile Grid Measurement
 - Phase Probe Measurement Time-of-Flight
- Test Bench Common Test Bench of HIT and Siemens Healthcare
 - Overview
 - Recommissioning of the Siemens-Spare-RFQ
 - Pepper Pot Measurements

The Test Bench at HIT Common Test Bench of HIT and Siemens Healthcare

Papers (others than HIT):

- IMPLEMENTATION OF A SUPERCONDUCTING ELECTRON BEAM ION SOURCE INTO THE HIT ION SOURCE TESTBENCH, <u>E. Ritter</u>, A. Silze, DREEBIT GmbH, Großröhrsdorf, R. Cee, T. Haberer, A. Peters, T. Winkelmann, HIT, Heidelberg, IPAC 2014, Dresden.
- ROSE A ROTATING 4D EMITTANCE SCANNER,

<u>M.T. Maier</u>, L. Groening, C. Xiao GSI Helmholzzentrum für Schwerionenforschung GmbH 64291 Darmstadt, Germany A. Bechtold, J. Maus, NTG Neue Technologien GmbH & Co. KG, 63571 Gelnhausen, Germany, IBIC 2019, Malmö.

Time-of-Flight Line:

400 keV/u

Tektronix

1 GHz

5 GS/s

4

TDS 5104B

Oscilloscope

Model

Bandwidth

Channels

Sampling rate

HIT owned laser tracker.

- Phase probe distances were measured with laser tracker
- Difficulty:
 - no survey station for the reflector probe on phase probe

Phase probe signals (top) and RF signal (bottom).

Data processing:

- Phase probes are not integrated in the test bench control system
- Oscilloscope raw data (*.wfm) are exported and converted to *.csv
- Time-of-flight and energy is determined by means of a python script¹ calculating the cross correlation between the signals on basis of the FFT

¹: script in its original version written by C. Kleffner, GSI

Energy and Transmission Measurement SHC Spare RFQ

SHC spare RFQ during recommissioning.

Resonant structure with rebuncher of medical RFQ.

Comparison of Spare RFQs:

including matching section

lon	HIT (2012)		SHC (2019)	
	Output Current	Trans- mission	Output Current	Trans- mission
H_3^+	364 µA	45%	375 μA	57%
¹² C ⁴⁺	69 µA	50%	117 μΑ	84%

Conclusion:

- The SHC spare RFQ shows better performance with respect to transmission and output currents having the same electrode design as the HIT spare RFQ
- The improvement can be attributed to optimised manufacturing techniques
- Further improvements can be expected with a new electrode design based on realistic (ECRIS) particle distributions

Pepper-Pot Emittance Measurement

For the HIT pepper pot see e.g.:

• A LOW ENERGY ION BEAM PEPPER POT EMITTANCE DEVICE,

M. Ripert, A. Büchel, A. Peters, J.Schreiner, T. Winkelmann, HIT, Heidelberg, Proceedings of BIW10, Santa Fe, New Mexico, US.

32.9 pixel per mm

aperture: 56 mm!

- Pixel calibration should be done with care as angle calculation is very sensitive to it
- Calibration must be done in the plane of the target, not in the plane of the mask
- It is good to have an alternative method (e.g. laser light) for cross-check

Image:

Raw Data Example (300 µA H₃⁺-Beam)

Image, inverted:

loom:	Zoom, inverted:	
		Image Pro
		Camera
		File forma
		Bit depth
		Size
		Width
		Height

Image Properties	
Camera	Allied Vision Prosilica GT
File format	tiff greyscale
Bit depth	16
Size	8,2 MB (4,2 MPixel)
Width	2048 Pixel
Height	2048 Pixel

Evaluation Steps

Image Processing

Zoom window:

14

Voronoi-Diagram

• Local maxima can be used as seeds for Voronoi cells

Voronoi-Cell: 2-dimensional equivalent to 3D Wigner-Seitz-cell.

Weighting: sum of pixel intensity in cell

MaximaCentres of Mass

Code base:

scipy.spatial.Voronoi from SciPy.org:

open boundary cells are not treated correctly!

A special treatment of the boundary cells was implemented

Idea:

APPLICATION OF VORONOI DIAGRAM TO MASK-BASED INTERCEPTING PHASE-SPACE MEASUREMENTS, A. Halavanau, IPAC 2017

Beamlet-Hole-Assignment

Mask holes (blue):

Zoom:

Hole diameter not scaled!

Visualisation of Final Result (300 µA H₃⁺-Beam)

Particle Distribution (2000 particles)

• Particle distribution can be used for RFQ simulation and design

4D-particle generator written by Th. Gläßle (formerly HIT)

Comparison Pepper Pot vs. Profile Grid (300 µA H₃⁺-Beam)

- Pepper pot and profile grid in same chamber (no particle transformation)
- Histogram refers to generated particles (2000)
- Maxima are scaled
- Centre of mass is shifted to zero
- One broken wire is ignored
- Good agreement confirms linearity between light intensity and beam intensity and correctness of our particle generator.

Comparison Pepper Pot vs. Slit-Grid

• Discrepancies are supposed to be caused by inaccuracies of the angle coordinate

Reconstruction:

Pepper Pot Next Steps

21

Summary and Outlook

• Medical Accelerator:

- Profile grids and phase probes are routinely used for monitoring the LINAC-beam properties
- The obtained data serve as reference and permit us to investigate the beam behaviour prior failures (i.e. aging effects)

The goal is to have an early-warning system by comparison of beam patterns with previous occurrences.

- Test Bench:
 - Common test facility with Siemens Healthcare for ion sources, RFQs and beam diagnostics
 - Siemens-spare-RFQ has been requalified
 - 4D emittance data, taken with a pepper pot device, have been evaluated with the tool PePE

A pepper pot device with new layout is under development.

We plan to install the pepper pot into the LEBT and use the measured beam distributions for the design of a new RFQ with high transmission.

