

Experiences from medical LINAC commissioning

ARIES Workshop

Experiences During Hadron Linac Commissioning

Bernhard Schlitt, GSI

January 26, 2021

- Dedicated ion beam therapy centers (synchrotrons)
- HIT & CNAO facility overviews
- Injector linac design & commissioning
- Conclusions

Dedicated (Carbon) Ion Beam Therapy Centers (Based on Synchrotrons)

Center		Start	Injector
HIMAC - Heavy Ion Medical Accelerator in Chiba	Japan	1994	Alvarez
HIBMC - Hyogo Ion Beam Medical Center	Japan	2002	Alvarez
GHMC - Gunma University Heavy Ion Medical Center	Japan	2010	200 MHz
SAGA HIMAT, Tosu	udwide an	2013	APF-
i-ROCK Kanagawa Cancer Center, Yokob	anning	2015	IH-DTL
Osaka Heavy Ion Therapy C additional faction I P	Japan	2018	4 MeV/u
HIT - Heidelberg Ion Beam under courter	Germany	2009	
CNAO, Pavia	Italy	2011	217 MHz
SPHIC - Shanghai Proton and Heavy Ion Center	China	2014	IH-DTL
MIT - Marburg Ion Beam Therapy Center	Germany	2015	7 MeV/u
MedAustron, Wiener Neustadt	Austria	2016	
Heavy Ion Cancer Treatment Center, Wuwei	China	2019	(Cyclotron)
	China	2010	

GSI Helmholtzzentrum für Schwerionenforschung GmbH Bernha

HIT Heidelberg Ion Beam Therapy Center

CNAO, Pavia

GSI Helmholtzzentrum für Schwerionenforschung GmbH

217 MHz HIT Injector Linac

GSI Helmholtzzentrum für Schwerionenforschung GmbH

HIT & CNAO LEBT & Linac Beam Instrumentation

M. Schwickert, A. Peters, EPAC 2004 A. Reiter et al., EPAC 2006

Viewing screens (org. Ta)	Real 2D images of ion source beams
SEM profile grids (at CNAO also wire scanners)	Beam profiles & positions (LEBT, Linac, MEBT)
Moveable slits	Beam analysis & selection of ion species (LEBT)
Faraday cups	Beam stop, DC / AC beam currents
DC & AC beam current transformers	Continuous beam current monitoring
Capacitive pick-ups / phase probes	TOF beam energy & bunch measurements (behind RFQ & Linac)

- See contributions by R. Cee (next talk) and A. Reiter (Wednesday, 4:35 pm) for further details and applications during routine operation & commissioning
- No emittance measurement installed at HIT for routine operation (just during beam commissioning & at test bench at HIT, see talk by R. Cee)
- CNAO: permanent emittance measurement devices installed along LEBT (slits & wire scanners, J. Bosser et al., EPAC 2008, A. Parravicini et. al., HIAT09)

HIT Injector Linac, Heidelberg, Germany B. Schlitt, LINAC 2008

CNAO, Pavia, Italy

MIT Injector Linac, Marburg, Germany built by Siemens /

> 0

GSI Helmholtzzentrum für Schwerionenforschung GmbH

20 MV Interdigital H-Mode Drift Tube Linac (IH-DTL)

Beam energy in – out	0.4 – 7 MeV/u
Integrated triplet lenses	3
Accelerating gaps	56
Tank length	3.8 m
Inner tank height	0.34 m
Inner tank width	0.26 m
Drift tube aperture diam.	12 – 16 mm
Tank voltage	~ 20 MV
Averaged eff. volt. gain	5.3 MV/m
Max. on axis electr. field	≤ 18 MV/m
Max. eff. gap voltage	~ 500 kV
Quality factor	15200
RF power loss (pulse)	~ 900 kW

B. Schlitt et al., LINAC 2004 & LINAC 2006 Y. Lu, LINAC 2004

In collaboration with IAP, Frankfurt University, Prof. Ratzinger

GSI Helmholtzzentrum für Schwerionenforschung GmbH

400 keV/u 4-Rod Type RFQ

Designed and assembled at IAP, Frankfurt University, Prof. Schempp

A. Bechtold et al., EPAC 2004

Beam energy in – out	8 – 400 keV/u
Electrode length	1.28 m
Tank diameter	0.25 m
Tank length	1.44 m
Electrode voltage	70 kV
RF power loss (pulse)	~ 200 kW

400 keV/u Inter-tank Section (ITM)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

RFQ Beam Test Bench @ GSI (HIT & CNAO RFQs)

C.-M. Kleffner et al., LINAC 2006

RFQ Beam Test Bench @ GSI (HIT & CNAO RFQs)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

HIT Linac Commissioning Milestones

B. Schlitt, LINAC 2008

2004 – 2005	Building	Building construction & installation of accelerator infrastructure	
Nov 2005 – March 2006	LEBT, ECRIS	Installation & testing of components	
April – May 2006	ECRIS	Successful beam commissioning	
May – July 2006	LEBT		
July – Oct 2006	RFQ	Installation & RF commissioning	
		Beam commissioning	
Oct – Dec 2006	IH-DTL	Installation IH-DTL & stripper section	
		RF commissioning	
		First 7 MeV/u C ⁶⁺ beams	
Feb 7, 2007	Synchrotron	1 st turn in synchrotron	
March 23, 2007	HEBT	1 st accelerated beam in treatment places	
Dec 16, 2007	H1, H2	C ⁶⁺ and proton beams in treatment quality	

GSI Helmholtzzentrum für Schwerionenforschung GmbH

CNAO LEBT Beam Commissioning Test Bench

- Wire scanners (WS) used for emittance measurements
 - \rightarrow large angular acceptance (±150 mrad)
- Slits (SLT) at RFQ input matching point
 - \rightarrow beam measurements at nominal field of the focusing solenoid
- Investigation & minimization of solenoid steering
- Preparation of H₃⁺ probe beam
 (factor 5 to 10 smaller rms emittances)

P. Posocco et al., HIAT09

CNAO Linac Beam Commissioning Test Benches

P. Posocco et al., HIAT09, B. Schlitt et al., IPAC 2010

Behind RFQ & ITM

Behind Stripper Section

- Similar test benches used at HIT Linac commissioning
- See talk by A. Reiter (Wednesday, 4:35 pm) for details of phase probe measurements

HIT Ion Source Investigations – **Viewing Screen Measurements (in LEBT)**

Evolution of H_3^+ and H_2^+ beam shape with ECR frequency behind first solenoid

GSI Helmholtzzentrum für Schwerionenforschung GmbH

RFQ Performance (CNAO)

B. Schlitt et al., IPAC 2010

P. Posocco et al., HIAT 2009

RFQ Acceptance Probing

RFQ Beam Energy & Transmission

GSI Helmholtzzentrum für Schwerionenforschung GmbH

- Adjustment of drift tube buncher integrated into RFQ to match beam energy and phase width at IH-DTL injection
 - → RFQ Testbenches at GSI (HIT & CNAO RFQs), DANFYSIK, and HIT
- **RFQ transmission at HIT and MIT only 30 40 %** (incl. solenoid & ITM)

Improvements so far:

- New input radial matcher (IRM) for reduced external focusing at RFQ injection (reduction of aberration effects by solenoid focusing)
- Mechanical design of RFQ electrodes & tank, improved alignment of electrodes & tank, more robust RFQ tank
- Optimized beam matching to RFQ (emittance measurements at exact RFQ injection point, acceptance measurements using probe beams)
- RFQ transmission at CNAO: ~ 60 %
 Kiel / Shanghai (Siemens): 60 70 %

Example for HIT Linac Beam Commissioning Results

B. Schlitt, LINAC 2008

Beam energy for different RF plunger positions (¹²C⁴⁺): Beam emittances behind foil stripper (¹²C⁴⁺):

Beam emittances agree well with simulation results

Example for Linac Commissioning (CNAO): Phase & Amplitude Scans, Chopper Rise Time

B. Schlitt et al., IPAC 2010

LINAC Performance (CNAO)

lons	Beam Currents / µA			Linac Transm.
	LEBT	Linac	Stripped	
C ⁴⁺ / ⁶⁺	~ 170	~ 85	~ 115	50 %
H ₃ + / p	1030	415	1200	40 %

- Linac transmission at Kiel (Siemens) ≥ 50 %
- Linac design beam currents achieved at CNAO and Shanghai
- High beam brilliance matches very well the requirements of efficient multiturn injection into the synchrotron

Carbon Ion Beam Currents (CNAO)

B. Schlitt et al., IPAC 2010

Conclusions

- Various beam instrumentation for beam commissioning & routine operation
- Individual beam test benches behind each injector section
- TB0 at RFQ injection point very helpful (CNAO)
- Various improvements of ECRIS & later RFQs
- HIT linac successfully in operation since ~ 14 years
- Availability ≥99 % w/o major breakdowns
- Very high stability & reliability
- > 6500 patients treated at HIT
- RFQ upgrades desired at HIT and MIT, further improvements proposed (revised beam dynamics, stem geometry, ...)

Thank you for attention!

