

Status of the 2015 data analysis

Incident angle effect

Héctor García Cabrera

May 29, 2020

E INNOVACIÓN

Context

The idea of this analysis is to check the effect of the incident angle of the particles in the efficiency, multiplicity, energy reconstruction, etc.

Repository for this analysis:

https://gitlab.cern.ch/hegarcia/sdhcal-angleanalysis

Test Beams: SPS May 2015 and PS June 2015

Wide range of energies: 2 – 70 GeV Pions

Several rotation angles: 22, 20, 10 (Last one only low energies 10GeV max.)

SDHCAL: 49 layers installed in the prototype.

Raw Stream-Out

Raw .slcio files from 2015 are byte collections which need to be converted to CalorimeterHits.

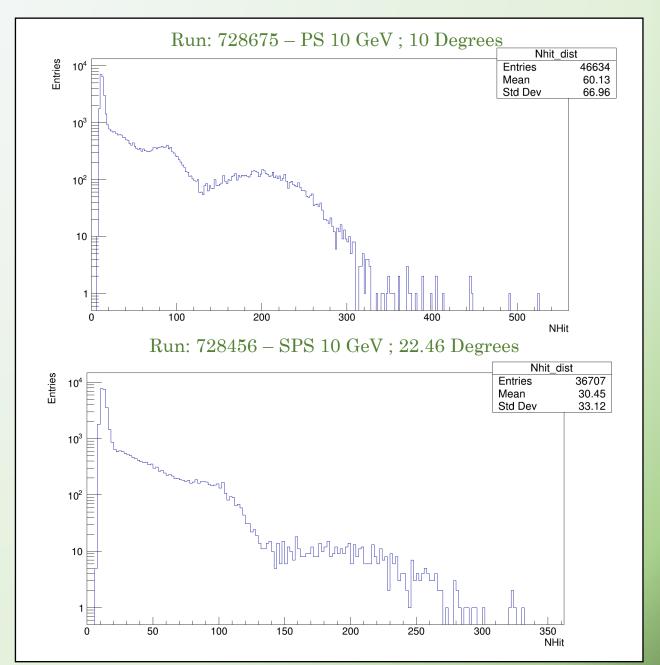
Previous data sizes and header shifts are valid except for the DIF header size which is 24 bytes.

ASIC frames with all pads fired (64 hits) were removed at this stage.

Slow Control data (DIF and ASIC Temperature) not extracted.

Trivent vo.3

The CalorimeterHit collections are used to make the time event reconstruction and encoded.


Adapted to accept the current *json* format of the mapping file.

Still unfamiliar with the Gain Correction, turned off.

Cuts:

- Total Nhit in the readout < 200000 (electronic noise cut)
- Nhit > 7 to start the time reconstruction
- Nlayers with signal > 7

First nHits distributions

Next steps

- Understand the gain correction mode and apply it if necessary
- Take a closer look to the events for different ranges of nHits
- A Marlin processor to create ROOT Files is half done
- Following previous analyses, apply cuts for particle selections

Back-up