Production of qq at 250 GeV: optimization of the cuts against ISR radiation

Adrián Irles, R. Pöschl, F. Richard IJCLab CNRS/IN2P3 (former LAL)

Laboratoire de Physique des 2 Infinis

Goal

Measure EW observables at the <u>per mil level of experimental precision</u>

- We want to measure differential distributions
- Ratios are optimal to remove (or reduce) systematic uncertainties
- These measurements will be done in the continuum (*cont.*) \rightarrow i.e. Far from the Z-Pole

$$R_q^{cont.}(|cos\theta_q|) = \frac{\sigma_{e^-e^+ \to q\overline{q}}^{cont.}(|cos\theta|)}{\sigma_{had.}^{cont.}(|cos\theta|)}. \qquad A_{FB}^{q\overline{q}} = \frac{\sigma_{e^-e^+ \to q\overline{q}}^{cont.,F} - \sigma_{e^-e^+ \to q\overline{q}}^{cont.,B}}{\sigma_{e^-e^+ \to q\overline{q}}^{cont.,F} + \sigma_{e^-e^+ \to q\overline{q}}^{cont.,B}}$$

For Rb main sources of uncertainty are the b-tagging efficiency and the normalisation (this talk)

Predictions (as a function of the ISR)

- The cross section depends on the "effective" center of mass energy
 - At which the Z/y couple to the quark-antiquark pair

Predictions (as a function of the ISR)

The observables remain basically flat for a large range of the Kcut

- Drastic change when the photn ISR is large enough to produce a return to the Z-pole
 - We need to avoid that region of the phase space.

Double Tag Method (à la Z-pole, LEP/SLC)

- The sample consisted on events made of two hadronic jets (qqbar)
 - The LEP/SLC preselection consisted on a "simple" veto of $Z \rightarrow$ leptons events
- The method is based on the comparison of single vs double tagged samples
 - f1= ratio of jets that are tagged as b-jets
 - f2= ratio of events in which both jets are tagged as b-jets

$$f_1 = \epsilon_b R_b + \epsilon_c R_c + \epsilon_{uds} R_{uds}$$

$$f_2 = \epsilon_b^2 (1 + \rho_b) R_b + \epsilon_c^2 R_c + \epsilon_{uds}^2 R_{uds}$$

To remove Luminosity dependence.

To remove modelling dependence on the efficiency of b-tagging

 Rb and ε_b are measured simultaneously.

ε_b = b-tagging efficiency

- $\rho_{\rm b}$ = b-tagging correlation factor
- ϵ_c = probability of tagging a c-quark jet as b-jet
- ε_{uds} = probability of tagging an uds-quark jet as b-jet

These values must be as small as possible and with small uncertainties

to not spoil our accuracy (not covered in this talk)

Double Tag Method (in the continuum)

▶ When we don't run at the Z-pole → contamination from other processes

$$f_{1}^{250} = \frac{\sum_{q=udscb} \epsilon_{q\bar{q}} \epsilon_{q} (\sigma_{q\bar{q}}^{cont.} + \sigma_{q\bar{q}}^{others})}{\sum_{q=udscb} \epsilon_{q\bar{q}} (\sigma_{q\bar{q}}^{cont.} + \sigma_{q\bar{q}}^{others})}$$

 $\epsilon_{q\bar{q}}$ = Preselection efficiency for qq events (q=udcsb)

$$f_{2}^{250} = ..$$

The first source of contamination are the qq bar events produced together with photon ISR (radiative return).

- with ~3-10 times larger cross section than the signal
- Very different Rb and AFBb values
- The second source of contamination are the background events from completely different physical processes
 - WW/HZ/ZZ \rightarrow with ~0.5 times the signal cross section

Double Tag Method (in the continuum)

 \blacktriangleright When we don't run at the Z-pole \rightarrow contamination from other processes

 $\varepsilon_{q\bar{q}}$ = Preselection efficiency for qq events (q=udcsb)

 $f_{2}^{250} = \dots$

The definition of the rations at 250 will match the on at the pole ($f_{1/2}^{250} = f_{1/2}$) if:

• $\varepsilon_{q\bar{q}} = \varepsilon_{b\bar{b}} = \varepsilon_{c\bar{c}} = \varepsilon_{uds,uds}$

- BKG contribution is negligible
- If not, these factors will have to be modeled by MC and/or data driven methods
 - Challenges/spoils the goal of the per mile in the accuracy !

Our goal is to define a preselection procedure that fulfills these conditions !

- We need to understand the topology of the radiative return events to remove them as efficiently as possible
- Technical Issue:
 - The nominal sample (~250fb-1) has a cut at generator level m_{ag} > 150 GeV

rv01-16-p10_250.sv01-14-01-p00.mlLD_o1_v05.E250-TDR_ws.I110011.P2f-highM_z_h.eL.pR_dst_7637_XXXXX_DST.slcio rv01-16-p10_250.sv01-14-01-p00.mlLD_o1_v05.E250-TDR_ws.I110012.P2f-highM_z_h.eR.pL_dst_7638_XXXXX_DST.slcio

• There is a second sample with lower statistics (~15fb-1) but includes the radiative return events

rv01-17-11-p02.sv01-14-01-p00.mILD_o1_v05.E250-TDR_ws.I106607.P2f_z_h.eL.pR_dst_00008992_XXXX-DST.slcio rv01-17-11-p02.sv01-14-01-p00.mILD_o1_v05.E250-TDR_ws.I106608.P2f_z_h.eR.pL_dst_00008992_XXXX-DST.slcio

For now on, we use the small sample for the design of the preselection procedure.

- We will compare with the nominal one at the end.
- The "chronological" approach was the opposite...

- We define our signal with Kγ<35 GeV and the radiative return with Kγ>35 GeV
 - parton level definition!
- Our first reconstruction step is to cluster the event in two exclusive jets
 - Generalized ee-kt algorithm

The simplest variable for the removal of radiative return events would be the invariant mass.

According to the large sample, a simple cut on m(2jets)>180 GeV would be enough.

A. Irles, 20th May 2020

Same histograms but normalized to 1

- To remove a large fraction of radiative return events we would need a cut on
 - I.e m(2jets)>220 GeV (or larger)
 - This cut would introduce large differences between flavors

Due to the presence of neutrinos in the hadronization/decay process.

► We will cut only at m(2jets)=130 GeV.

Preselection

- Alternatives to m(2jets) ?
- Estimator of the energy of the photon ISR using only the two reconstructed jets.
 - From momentum conservation (if the photon/s are emitted parallel to the beam pipe):

Preselection : Kreco

- Estimator of the energy of the photon ISR
- ► We apply a cut of Kreco<35 GeV
- Some signal events have larger Kreco (~15%)
 - Because of detector resolution and double photon ISR

- Some radiative return events have Kreco<35GeV (~7%)</p>
 - Because the photon(s) has not escaped through the beam pipe

Can we identify the photon clustered in one or both jets and veto these events?

Preselection : Photon Veto

► We look at the neutraleness of the jets

signal

Preselection : Photon Veto

- Vetoing events with at least one jet with neutraleness>0.85,
 - The signal efficiency remains almost unchanged
 - The efficiency of mis-selection radiative return events is reduced from the 7% to the 1.5%

In addition, we veto:

- Events with jets with less than 5 PFOs (to veto events with photon conversion)
- Events with energetic neutral PFOs at very large angles
- The mis-selection efficiency is reduced to the ~0.5% (Details on the backup slides)

why not looking at the "photon-likeness" ?

Similar definition but using only PFOs tagged as photons instead of neutral PFOs

- It shows large inefficiencies
 - ~50% of the events that we remove now would not be removed by vetoing identified photons
- To be investigated in detail with the new software and samples.

Final steps of the preselection

- Cut on y23<0.015 (jet distance at which the 2 jet event would be clustered in 3 jets)</p>
- Cut on mj1+mj2<100 GeV</p>

Preselection summary

Final values of the preselection

- Using the "small sample with radiative return included"
 - Efficiency of signal selection of the 71%
 - Radiative return contamination (**B/S**) of the 2.8%
- Using the "nominal large sample with radiative return removed at generator level"
 - Efficiency of signal selection of the 71%
 - Radiative return contamination (B/S) of the 1.6% (almost half than expected!)
- B/S for the other backgrounds are of ~0.5%

Preselection cuts have to be carefully adjusted

• To avoid biases due to cuts at generator level

Conclusions & prospects

- We have defined a new and more robust preselection procedure and a more robust signal & radiative return definition
 - Have observed significant differences on background between full ISR sample and pre-selected sample
 - The procedure relies on the veto of photons → further investigation on photon ID capabilities with the new releases is planned.
- Reduced B/S for radiative return and other backgrounds
- The ε_{aa} are the same for all flavors and had no angular dependence
 - The per mile level of precision is not compromised !!

Several other improvements on the method have been carried out (not discussed here)

• We are now in the process of upgrading the ILD note draft for circulation.

Back-up slides

A. Irles, 20th May 2020

m2jets (large vs small sample)

Polarization	$\sigma_{e^-e^+ \to q\overline{q}}(E_{\gamma} < 35 GeV)$ [fb]			$\sigma_{e^-e^+ \to q\overline{q}}(E_{\gamma} > 35 GeV)$ [fb]			
	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$	
$e_L^- e_R^+$	5677.2	8518.1	18407.3	20531.4	18363.8	57651.3	
$e_R^- e_L^+$	1283.2	3565.0	5643.5	12790.8	11810.8	36179.5	
	$R_q^{cont.}(E_{\gamma} < 35 GeV)$			$R_q^{cont.}(E_{\gamma} > 35 GeV)$			
	q = b	q = c	q = uds	q = b	q = c	q = uds	
$e_L e_R^+$	0.17457	0.26053	0.56480	0.17875	0.24826	0.57300	
$e_R e_L^+$	0.12183	0.33913	0.53905	0.13658	0.31175	0.55167	
	A	$F_{FB}^{q\bar{q}}(E_{\gamma} < 35)$	5 GeV)	$A_{FB}^{q\bar{q}}(E_{\gamma} > 35 GeV)$			
	q = b	q = c	q = uds	q = b	q = c	q = uds	
$e_L e_R^+$	0.69057	-0.59611	-0.09905	0.62376	-0.42540	0.10900	
$e_R e_L^+$	0.26489	-0.68455	-0.45878	-0.58853	0.30890	-0.14354	

Table 1: Production cross section of quark pairs at 250 GeV of center of mass using polarized beams.

Channel	$\sigma_{e_L^-e_R^+ \to X}$ [fb]	$\sigma_{\bar{e_R}e_L^+ \to X}$ [fb]
$X = WW \to vqvq$	14874.4	136.4
$X = ZZ \rightarrow q\bar{q}q\bar{q}$	1402.1	605.0
$X = HZ \to q\bar{q}q\bar{q}$	346.0	222.0

$$d_{ij} = min(E_i^{2p}, E_j^{2p}) \frac{1 - cos(\theta_{ij})}{1 - cos(R)}$$

$$d_{iB} = E_i^{2p}$$

A. Irles, 20th May 2020

A. Irles, 20th May 2020

Efficiency of selection for $e_L e_R^+ \to X$ [%]										
	$X = q\overline{q} \ (E_{\gamma} < 35 GeV)$			$X = q\overline{q} \ (E_{\gamma} > 35 GeV)$						
	$b\overline{b}$	$c\overline{c}$	$q\overline{q}$ (uds)	$q\overline{q}$ (udscb)	X = ZZ	X = WW	X = HZ			
No cuts-	100%	100%	100%	108%	100%	108%	100			
Cut 1	84.5%	84.9%	86.4%	6.7%	12.3%	11.7%	12.6			
+ Cut 2	82.8%	82.0%	80.3%	1.2%	12.1%	11.1%	11.8			
+ Cut 3	72.1%	71.7%	71.3%	0.7%	2.5%	5.0%	4.5			
+ Cut 4	71.5%	71.1%	70.7%	0.7%	1.6%	3.6%	3.8			
Efficiency of selection for $e_R^+ e_L^+ \rightarrow X$ [%]										
	$X = q\overline{q} \ (E_{\gamma} < 35 GeV)$			$X = q\overline{q} \ (E_{\gamma} > 35 GeV)$						
	$b\overline{b}$	$c\overline{c}$	$q\overline{q}$ (uds)	$q\overline{q}$ (udscb)	X = ZZ	X = WW	X = HZ			
No cuts-	100%	100%	100%	108%	100%	108%	100			
+ Cut 1	84.1%	85.2%	86.5%	7.0%	12.5%	12.6%	12.4			
+ Cut 2	82.6%	82.2%	81.1%	0.7%	12.3%	11.8%	11.8			
+ Cut 3	71.6%	72.3%	72.2%	0.4%	2.5%	5.6%	1.8			
+ Cut 4	71.1%	71.6%	71.6%	0.4%	1.7%	4.3%	1.6			

Figure 7: Expected number of standard deviations for different BSM scenarios when determining the different EW couplings to c- and b-quark at ILC250. The x-axis shows the different couplings for different chiralities, following the notation from [20]. The expectations for different BSM scenarios are shown: 1) for Djouadi [24] one assumes $m_{Z'} = 3$ TeV; 2) for the Peskin *et al.* model [26], two versions are given, labelled as Peskin 4 and Peskin 5; 3) for Hosotani et al.[25] one assumes $m_{Z'} \sim 8$ TeV for the 3 resonances. These prospects assume the input from the ILC GigaZ programme running at the Z-Pole [22] in order to improve by a factor ~ 5 the current precision on the SM Z-boson couplings to the different quarks measured at the Z-pole.

A. Irles, 20th May 2020