Máster interuniversitario de física nuclear – FNA II (2017– 2018)

NUCLEAR ENERGY: THE CASE OF SPAIN

Francisco Álvarez-Velarde

Nuclear Innovation Unit

Introduction

Evolution of the nuclear energy in Spain

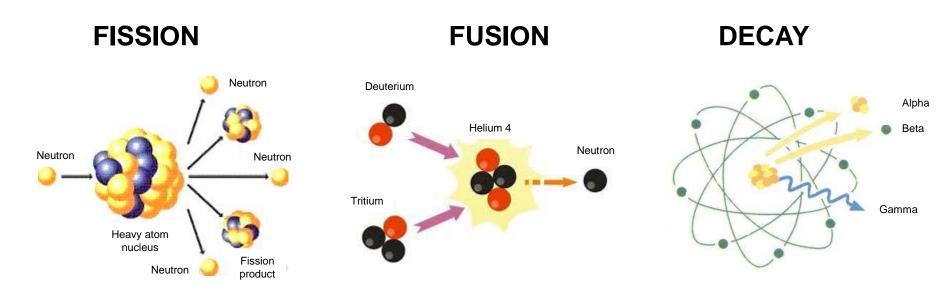
Applications of nuclear energy

Spanish regulation

Introduction

Evolution of the nuclear energy in Spain

Applications of nuclear energy


Spanish regulation

Introduction

Nuclear Energy usually refers to a wide concept which includes all the knowledge and techniques allowing the use of the energy contained in the atomic nucleus.

This nuclear energy keeps the components of the nucleus together and can be artificially or spontaneously emitted by means of nuclear processes or reactions.

Introduction

Evolution of the nuclear energy in Spain

Applications of nuclear energy

Spanish regulation

Evolution of Nuclear Energy in Spain

The development and evolution that nuclear energy has experienced in an international and national framework can be established in the following stages, defined by the historical facts and the successive reactions to them:

[Origin: discovery of radioactivity at end of XIX century ...]

1st stage: Secret and militarization of all the matters related to nuclear energy (1939-1953)

2nd stage: Demilitarization and promotion of the civil uses of nuclear energy in search of its commercialization (1953-1979)

3rd stage: Revision of the nuclear matters under the view of the nuclear safety (1979-nowadays)

Evolution of Nuclear Energy in Spain

1st stage: Secret and militarization of all the matters related to nuclear energy (1939-1953)

- Discovery of nuclear fission (1938-39)
- Awareness of energy potential: military control of research
- First nuclear reactor in the frame of the Manhattan Project (CP-I,1942)
- World War II: nuclear bombs in Hiroshima and Nagasaki (1945)
- Spain: no relevance in the field of nuclear physics, it suffered international secrecy
 - National intervention on uranium mining
 - 1947 "agreement" with USA: supply of bibliography on nuclear
 - Creation: Junta de Investigaciones Atómicas (1948) for high qualification personnel formation, uranium mining exploitation and uranium physics, Estudios y Proyectos de Aleaciones Especiales - EPALE SA (1949) for geology, mining, physics and metallurgy, Junta de Energía Nuclear - JEN (1951), rebirth as research center.

Evolution of Nuclear Energy in Spain

2nd stage: Demilitarization and promotion of the civil uses of nuclear energy in search of its commercialization (1953-1979)

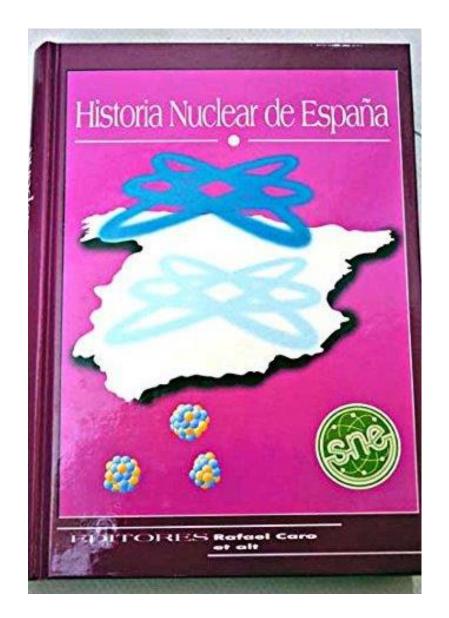
- 1953 United Nations: "Atoms for Peace" declaration -> promotion for commercialization of the peaceful uses of nuclear energy
- Openness of the knowledge on nuclear physics
- Spain: 1955, agreement with USA -> JEN-I reactor (1958), José Cabrera power plant (1968) & Sta. M. de Garoña (1970)
 - Regulation change: Ley de Liberalización del Ciclo del Uranio (1958), Ley Energía Nuclear (1964)
 - Creation of ENUSA (1972)
 - Spain's membership to international organisms: NEA/OECD, Moscow Treaty (banned nuclear weapon tests in the atmosphere, in outer space and under water), Paris & Brussels Conventions (damage compensation/liability as a result of a nuclear accident)...

Evolution of Nuclear Energy in Spain (IV)

3rd stage: Revision of the nuclear matters under the view of the nuclear safety (1979-nowadays)

- A nuclear programme is activated in several countries, including Spain
- Concern on nuclear safety (NS) and radiologic protection (RP), nuclear option for energy mix
- Spain: development of regulation on NS-RP, creation of CSN (1980), ENRESA (1984), and CIEMAT (1986)
 - 1983 nuclear moratorium (5 of 7 projects cancelled)
 - 1987 Signature of Treaty on the Non-Proliferation of Nuclear Weapons
 - General Plan on Radioactive Waste (6 up to now, 1987-...)
 - >> El Cabril, ATC

	Centrales Nucleares proyect			
Central	Potencia eléctrica	Tipo	Emplazamien (provincia) Guadalajara Burgos	
José Cabrera	160	PWR		
Sta. María de Garoña	460	BWR		
Vandellos I	4802*930	GCR	Tarragona	
Almaraz I y II	2*930	PWR	Cáceres	
Lemóniz I y II	2*931	PWR	Vizcaya	
Ásco I	930	PWR	Tarragona Tarragona Valencia	
Ásco II	930	PWR		
Cofrantes	975	BWR		
Santillana	900	LWR	Santander	
Punta Endata I y II	2*1000	LWR	Gulpúzcua	
Trillo I y II	2*1000	PWR	Guadalajara	


Valdecaballeros I & II (not connected to the grid)

\		
BOE 25/11//5	1981/1982 1982	
BOE 28/08/76		
BOE 25/11/75	1981	
	1985	
	1988/1999	
	1982/1986	
	1981	
	1981/1983	
	1980/1990	
BOE 12/03/76	1988	
BOE 12/03/76	1983	
	BOE 28/08//6 BOE 25/11/75 BOE 12/03/76	

Sánchez Ron, ed. CIEMAT 2001

Tabla 1.1

"Historia Nuclear de España" Rafael Caro et al. SNE

Introduction

Evolution of the nuclear energy in Spain

Applications of nuclear energy

Spanish regulation

Nuclear energy

- The main use of electricity by measurement fission reactors (not yet available).
- Currently, there construction (Asia
 10% of the global
- In Spain there are I & II, Trillo, Co (Vandellós I and Sta. M. de Garoñ In 2019, the ele 21.4% of the tota the installed powe

Nuclear energy data in Spain in 2019

Leader in electric production

21.43 % of consumed electricity

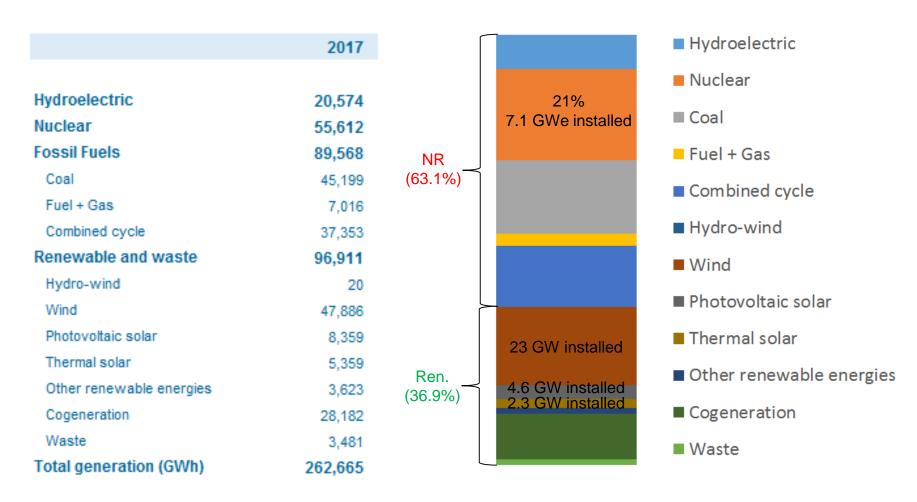
55,843 GWh net produced

Most hours of operation

90 % of the total hours in one year

7,846 hours of 8,760 in a year

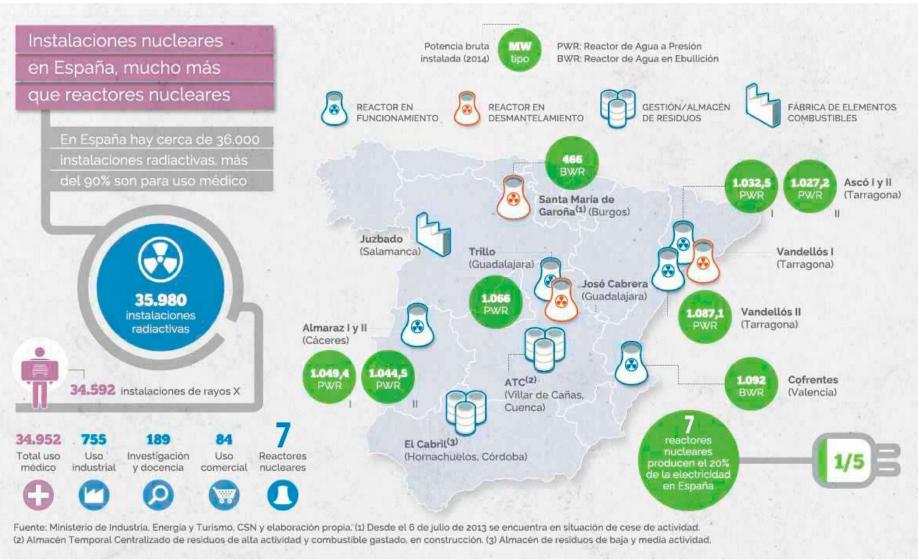
Most emissions avoided


36.22 % of emissions-free electricity

Source: Foro Nuclear with data from REE

Spanish annual electricity balance

Source: Red Eléctrica Española

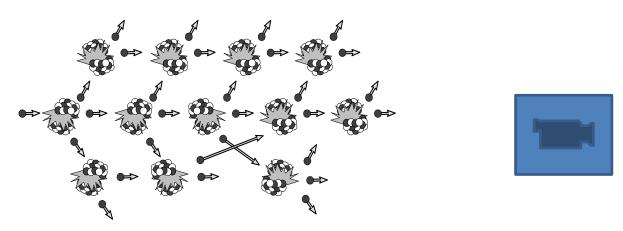

Spanish nuclear power plants

Reactors	Туре	Net MWe	First power	Commerc operation		Owner (%); operator	Licenced to		
Almaraz 1	PWR	1011	1981	1981		Iberdrola 53%, Endesa 36%, Gas Na	atural 2021/ <mark>27</mark>		
Almaraz 2	PWR	1006	1983	1984		Fenosa 11%; CNAT	2023/28		
Asco 1	PWR	995	1983	1984		Endesa (100%); ANAV	2023/ <mark>29</mark>		
Asco 2	PWR	997	1985	1986		Endesa (85%), Iberdrola (15%); ANA	AV 2025/ <mark>30</mark>		
Cofrentes	BWR	1064	1984	1985		Iberdrola (100%); Iberdrola	2021/33		
Trillo 1	PWR	1003	1988	1988		Iberdrola (48%), Gas Natural Fenos (34.5%), EDP (15.5%); CNAT	a 2024/35		
Vandellos 2	PWR	1045	1987	1988		Endesa (78%), Iberdrola (28%); ANA	AV 2027/ <mark>34</mark>		
Total (7)		7121 MWe				Nuclear Power Plants in Spain			
Garona									
		Type	Net MWe	First power	Shutdown	Years of operation	rillo Vandellos		
Vandellos 1		UNGG	480	1972	1990	18 Madrid Almaraz	100		
Jose Cabrera	(Zorita) PWR	142	1968	2006	38 Cofre	entes		
Santa Maria	de Garo	na BWR	446	1971	2012	41			
ados			0:						

F. Álvarez-Velarde - Nuclea

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Spanish radioactive facilities

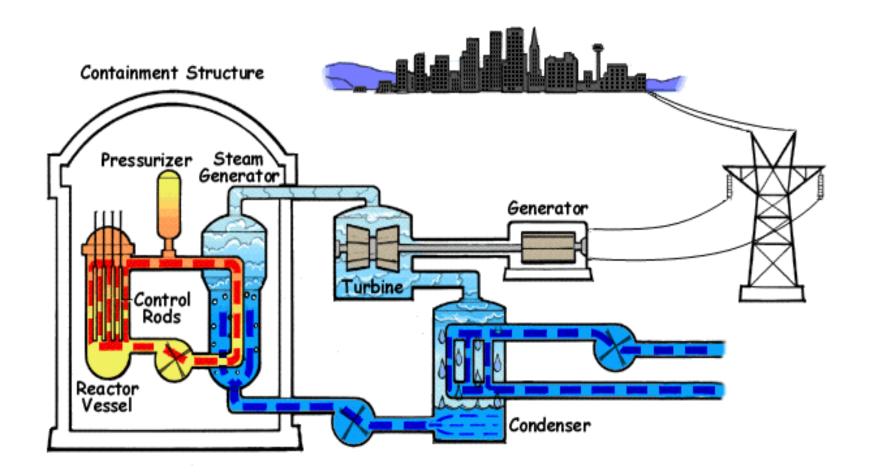

DE CIENCIA

E INNOVACIÓN

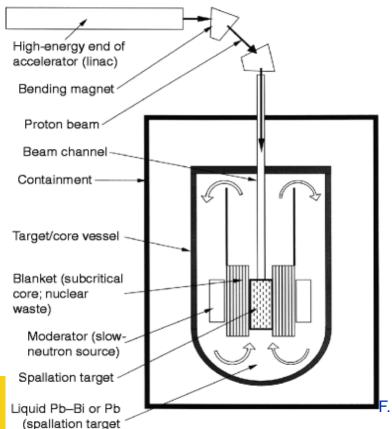
Nuclear energy (II)

The operation of a **nuclear power plant** is the same that the operation of other power station (coal, oil, gas). Fossil or nuclear fuels produce heat, which is used to boil water to make steam, which is delivered to a turbine.

In the current nuclear reactors, this heat is created by means of fission reactions produced in the nuclear fuel: the fission generates heat and other particles (neutrons) with high kinetic energy that can be transmitted to the surrounding media and used to create more fission reactions.



Nuclear energy (III)


General scheme of a Pressurized Water Reactor (PWR)

Nuclear energy (IV)

 R+D: The ADS (Accelerator-Driven subcritical System) are nuclear systems where a high intensity accelerator (protons) makes high energy particles collide against an adequate (lead) target producing a large amount of neutrons due to the spallation reaction that can be used for different purposes.

and core coolant)

The main purpose of the ADS is the transmutation of high level nuclear waste, changing the long lived radioactive isotopes present in the nuclear waste into other isotopes having a smaller radiotoxicity and a shorter lifetime.

1998 – Project of building and ADS in Zaragoza (Spain): Laboratorio del Amplificador de Energía.

2004 – Project of building a test ADS at the ATC: Almacén temporal de residuos radiactivos.

The Spanish ATC (Centralized Interim Storage)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ATI (Individual Interim Storage)

- Commissioned by ENRESA, in close collaboration with the owners, with the aim of having more flexibility for the final transport of the spent fuel to the ATC.
- Currently there are 5 ATIs in operation and 1 in construction: Trillo (2002), José Cabrera (2009), Ascó (2013), Almaraz (2018), Garoña (2018) and Cofrentes (construction began in 2019). Vandellós pools are at 90% capacity (plan for an ATI commissioned in 2026).
- Their goals are maintaining subcriticality, the confinement of the radioactive material, the removal of the generated residual heat, having capacity for the retrieval of the fuel, the control of the operational, public

and environmental exposure.

 All of them are dry storage excepting Garoña.

Ascó nuclear power plant individual interim storage. Source: Spanish YGN

El Cabril disposal facility

- The Spanish disposal facility for very low, low, and intermediate level radioactive waste (El Cabril) is located in Hornachuelos (Córdoba) and is managed by ENRESA.
- It receives radioactive waste from nuclear power plants and radioactive facilities.
- It is divided into two well defined areas: the buildings area and the disposal area.
- The low and intermediate level disposal area is formed by two platforms (north, with 16 disposal structures, and south, with 12).
- The disposal area for very low level waste consists in one platform.

Source: ENRESA

Introduction

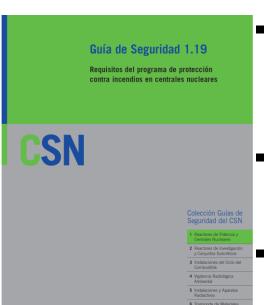
Evolution of the nuclear energy in Spain

Applications of nuclear energy

Spanish regulation

Spanish regulation

Most of the Spanish regulation referring to nuclear activities is based on international Treaties and Conventions signed by Spain and EURATOM Directives. Later, these rules are transposed into **national regulation**.


The Spanish Nuclear Safety Council (CSN) is the **sole nuclear safety and** radiation protection authority in Spain. The CSN is governed by public law and by its charter. It is independent from the central government, and it has its own legal personality and its own assets. It is accountable to the Congress of Deputies and the Senate.

The CSN's mission is to **protect** employees, the population at large and the environment from the harmful effects of ionizing radiation. It accomplish this by ensuring that nuclear and radioactive facilities are **operated safely** and by establishing the preventive and corrective measures to apply in all radiological emergencies, no matter what their source.

Spanish regulation

CSN proposes to the government the necessary nuclear safety and radiation protection regulations and any updates to them that the CSN deems advisable. The CSN also adjusts Spanish legislation to comply with international legislation, especially European Union directives.

Similarly, the CSN prepares and approves technical documents for nuclear and radioactive facilities and other activities within the areas for which the CSN is responsible. In particular:

- <u>Instructions</u>, compulsory technical rules on nuclear safety (NS) and radiation protection (RP). They are published in Spain's official journal.
- <u>Guides</u>, technical recommendations for guidance. Not compulsory.
- Circulars are informative technical documents about facts or circumstances related to NS or RP.

Introduction

Evolution of the nuclear energy in Spain

Applications of nuclear energy

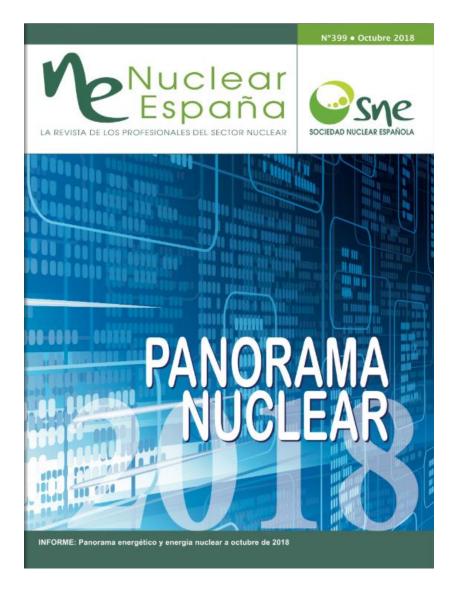
Spanish regulation

Nuclear industry in Spain

The Spanish companies related to the nuclear sector are present in all aspects of nuclear power:

- design, construction, operation of nuclear power plants
- energy distribution
- fuel fabrication
- decommissioning/dismantling, waste management
- R&D projects

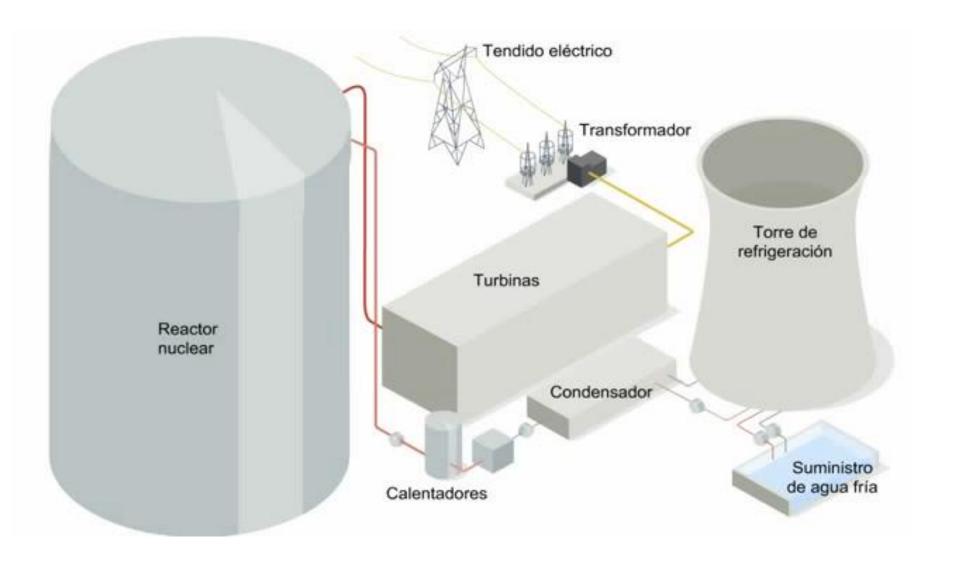
...all of this to a national and international level



Nuclear Directory

The Spanish Nuclear Society provides the Nuclear Directory, which includes information of companies, products and services made by Spanish companies.

More than 160 companies and institutions.


More info at: www.directorionuclear.com

Thank you for your attention

E INNOVACIÓN

