# What are nuclear data?

D. Cano-Ott Nuclear Innovation Unit – CIEMAT <u>daniel.cano@ciemat.es</u>







# Various nuclear problems

How do we design a nuclear reactor? Neutronics ruling the chain reaction, reactor control, isotopic evolution of the fuel, neutron damage to the structural materials...

How do we design a fusion reactor? Fusion reactions, tritium breeding reactions, monitoring...

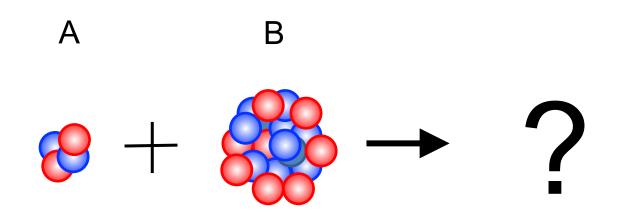
How do we produce isotopes for medical applications (imaging, therapy, monitoring)?

What is the dose due to neutrons in a conventional radiotherapy treatment? Neutrons produced in photonuclear reactions.

What is the far from field dose in a proton therapy treatment? Biological effect of secondary particles produced in proton induced nuclear reactions.

How are the elements produced in stars? s-process, r-process, p-process...

#### How do we improve our nuclear and nuclear reaction models?






**FINNOVACIÓN** 



## **Nuclear reactions**



How probable is a A + B nuclear reaction?

What are the possible reaction channels and the distributions of the reaction products (isotopic, energy, angle...)

What are the half-lives, masses ... of the decay products?





E CIENCIA



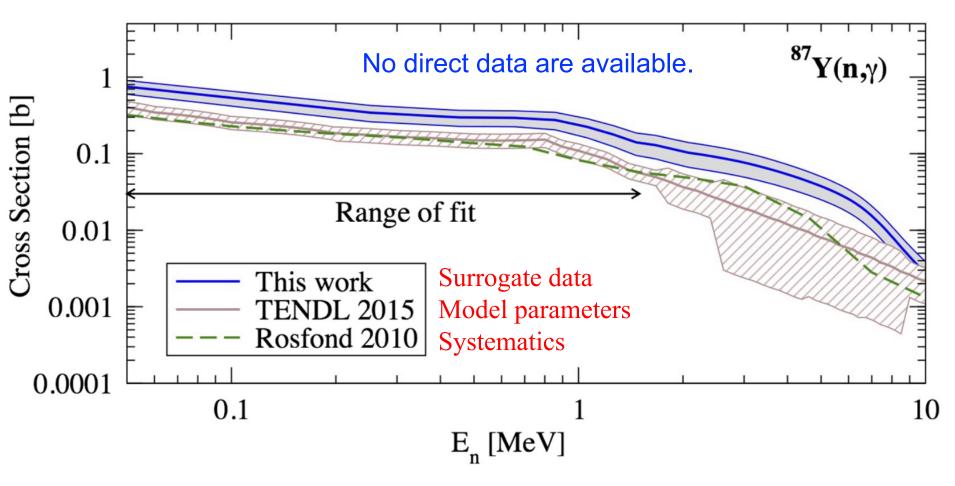
# **Nuclear reaction models**

Nuclear reaction models

- Direct + compound nucleus (resonances)
- Statistical models (Hauser Feshbach...)
- Optical model
- Preequilibrium model
- Intranuclear cascade
- Spallation
- Liquid drop model for fission

```
Neutron induced reactions,
excitation energy = S_n + ...
```

```
meV – keV
keV – 100 keV
MeV
10 MeV
100 MeV
1 GeV
```




. .





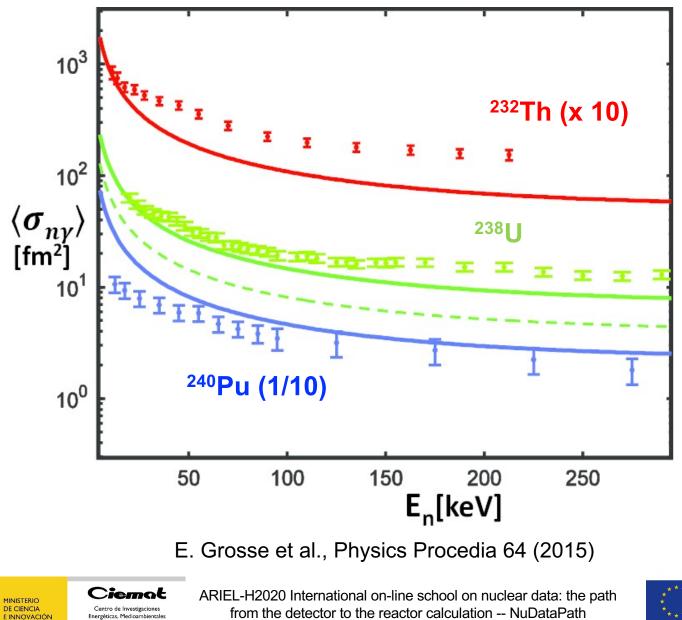
# The (in) accuracy of the models



J. E. Escher et al., Phys. Rev. Lett. 052501 121 (2018)



MINISTERIO DE CIENCIA


E INNOVACIÓN

Cierno de Investigaciones Energéticas. Medioambientales

y Tecnológicas



# The (in) accuracy of the models



GOBIERNO

DE ESPAÑA

y Tecnológicas



6

# The required accuracies

The target accuracy required for a given problem will depend on its nature and the imposed safety margins: criticality, dose to public, isotopic inventory calculation, nucleosynthesis in astrophysical scenarios...

Accuracies required for nuclear technologies are usually very demanding (i.e. linked to safety). For example, the uncertainty  $\Delta k$  in the neutron multiplication k for a reactor needs to be calculated with 1000 pcms or less

$$\frac{\Delta k_{calc}}{k_{calc}} \approx 0.01$$

#### Nuclear theory is not good enough. We need to:

- Measure the nuclear properties and use the experimental results in our calculations.
- Constrain the nuclear models with the data.





# **Types of nuclear data**

Every nuclear application that requires minimal precision must be supported by well-validated experimental data. Nuclear models are not able to predict (by themselves) accurately the microscopic properties of nuclei.

- Nuclear reaction data: cross sections (probability of reaction as a function of energy), energy distributions, multiplicity and angular distributions of reaction products ...
  - Decay and nuclear structure data: modes of disintegration, halflives, probabilities of emission of particles (multiplicities, energies, angular correlations), information on the nuclear structure (energy, spin and parity) ...
- Integral data. Macroscopic properties of nuclear systems, some of them measured or determined with high accuracy. They are typically used for the test and validation of microscopic data.



Differential data

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



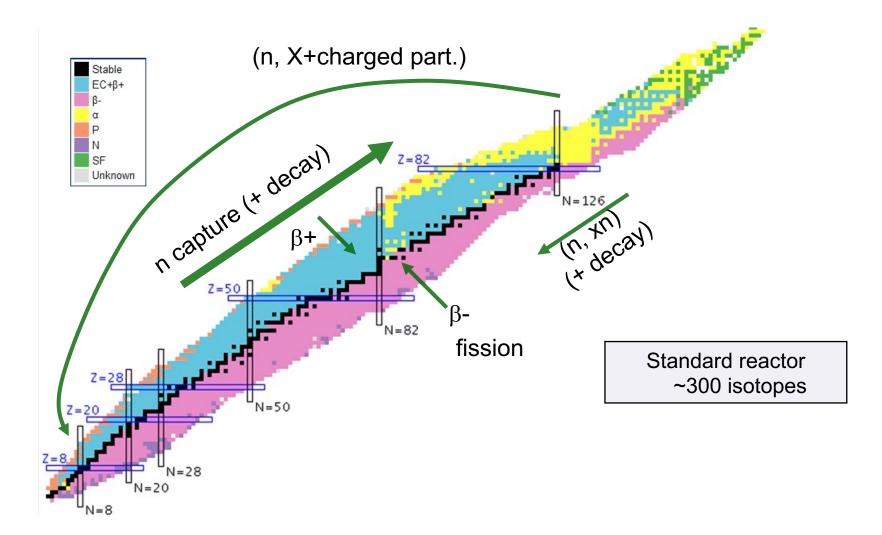
## Nuclear processes inside a nuclear reactor

| Cf 241<br>3.8 m                  | Cf 242<br>3.49 m        | Cf 243                      | <b>Cf 244</b><br>19.4 m      | Cf 245<br>45.0 m          | Cf 246<br>1.49 d            | Cf 247<br>3.11 h        | Cf 248<br>333.5 d | Cf 249<br><sup>351 y</sup> | Cf 250<br>13.08 y           | Cf 251<br><sup>898 y</sup> | Cf 252<br>2.645 y |
|----------------------------------|-------------------------|-----------------------------|------------------------------|---------------------------|-----------------------------|-------------------------|-------------------|----------------------------|-----------------------------|----------------------------|-------------------|
|                                  |                         |                             |                              |                           |                             |                         |                   |                            | >                           |                            |                   |
| Bk 240<br>4.8 m                  | Bk 241<br>4.6 m         | Bk 242<br>7.0 m             | Bk 243<br>4.5 h              | Bk 244<br>4.35 h          | Bk 245<br>4.94 d            | Bk 246<br>1.80 d        | Bk 247<br>1.4 ky  | Bk 248<br>23.7 h 9.0 y     | Bk 249<br>320 d             | Bk 250<br>3.217 h          | Bk 251<br>55.6 m  |
| Cm 239<br>2.9 h                  | Cm 240<br>27 d          | Cm 241<br><sub>32.8 d</sub> | Cm 242<br>162.93 d           | Cm 243<br><sup>30 y</sup> | Cm 244<br>34 ms 18.0 y      | Cm 245<br>8.5 ky        | Cm 246<br>4.73 ky | Cm 247<br>16.0 My          | Cm 248<br><sup>340 ky</sup> | Cm 249<br>1,0692 h         | Cm 250<br>8 ky    |
| A == 020                         | A == 000                | Arr 040                     | A                            |                           |                             |                         | A == 0.45         |                            | Am 047                      |                            | A == 0.40         |
| Am 238<br>1.63 h                 | <b>Am 239</b><br>11.9 h | Am 240<br>2.117 d           | Am 241<br>432.8 y            | Am 242                    | Am 243<br>7.36 ky           | Am 244<br>26 m   10.1 h | Am 245<br>2.05 h  | Am 246<br>25.0 m 39 m      | <b>Am 247</b><br>23.0 m     | Am 248<br>3.0 m            | Am 249            |
| Pu 237<br>80 ms 45.3 d           | Pu 238<br>87.7 y        | Pu 239<br>24.114 kr         | Pu 240<br>6.563 ky           | Pu 241<br>14.33 y         | Pu 242<br>373.5 ky          | Pu 243                  | Pu 244<br>80.0 My | Pu 245<br>10.5 h           | Pu 246<br>10.85 d           | Pu 247<br>2.3 d            |                   |
| Np 236<br>2.5 h / 152 ky         | Np 237<br>2.14 My       | Np 238                      | Np 239<br>2.355 d            | Np 240<br>7.4 m 1.08 h    | Np 241<br><sup>13.9 m</sup> | Np 242<br>5.5 m 2.2 m   | Np 243<br>1.85 m  | Np 244<br>2.29 m           |                             | (n,1                       | f) > (n           |
| U 235<br>0.7204<br>26 m 703.8 My | U 236<br>23.7 My        | U 237<br>6.75 d             | U 238<br>99.2742<br>4.468 Gy | U 239<br>23.47 m          | U 240<br>14.1 h             | U 241<br>5.0 m          | U 242<br>16.8 m   |                            |                             | → (n,                      | γ)                |
|                                  |                         |                             |                              |                           |                             |                         |                   |                            | R                           | β-α                        | decay<br>decay    |
|                                  |                         |                             |                              |                           |                             |                         |                   |                            |                             | α-α                        | decay             |

from the detector to the reactor calculation -- NuDataPath

DE ESPAÑA

MINISTERIO DE CIENCIA


**E INNOVACIÓN** 

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

9

## Data for nuclear reactors, waste management...





MINISTERIO

DE CIENCIA

**E INNOVACIÓN** 



y Tecnológicas



## Nuclear data for nuclear technologies

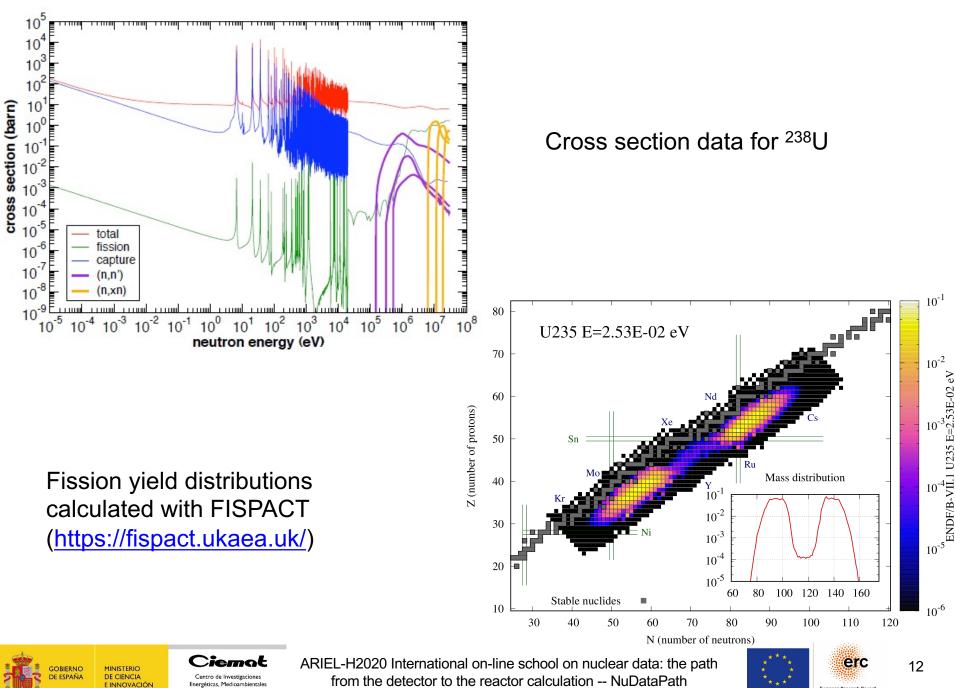
#### Cross sections:

- Fission (n,f) and neutron capture (n, $\gamma$ ) of actinides, structural materials and some fission fragments ...
- Reactions (n, n), (n, n'γ), (n, xn), for fuel and other reactor materials: coolants, moderators, vats, control rods ...
- Emission probabilities and secondary particle spectra: prompt neutrons, prompt γ-rays, fission fragment distribution ...
- Fission fragments.

#### Beta disintegration of fission fragments:

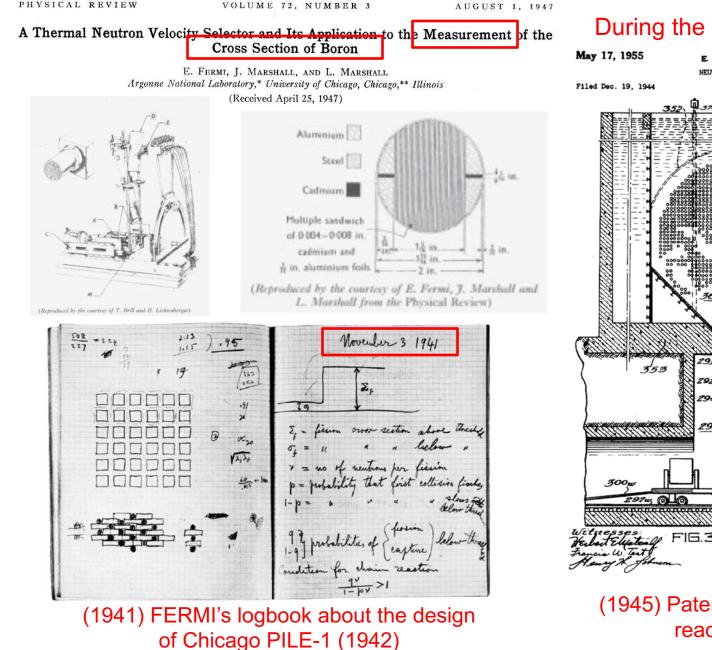
• decay and emission schemes of delayed neutrons,  $\gamma$ 's,  $\beta$ 's, (neutrinos) ...

#### See seminars by:


**FINNOVACIÓN** 

- E. González Romero on Nuclear data for nuclear technologies and applications
- F. Álvarez on Nuclear data for reactor physics (thermal and fast systems)
- F. Álvarez on *Nuclear fuel cycles*




#### Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas





y Tecnológicas

European Researce Established by the European

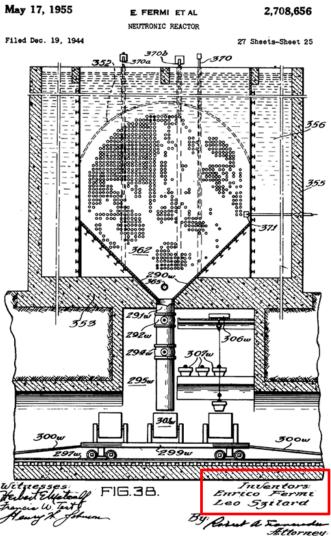


#### GOBIERNO DE ESPAÑA

MINISTERIO

DE CIENCIA

**E INNOVACIÓN** 


PHYSICAL REVIEW

#### Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ARIEL-H2020 International on-line school on nuclear data: the path from the detector to the reactor calculation -- NuDataPath

### During the Manhattan project



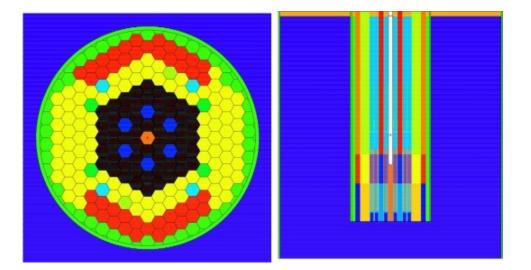
#### (1945) Patent on Fermi-Szilard reactor design.

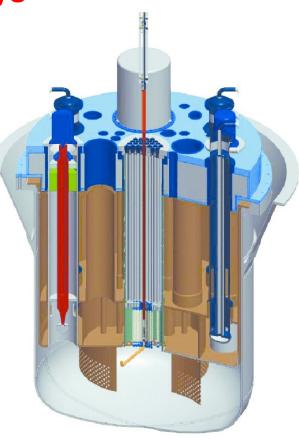


# Nuclear Science for the Manhattan Project and Comparison to Today's ENDF Data by M. B Chadwick

https://doi.org/10.1080/00295450.2021.1901002






# State of the art nowadays

- 1. Better Monte Carlo simulation tools and computers.
- 2. Powerful and well characterised neutron sources.
- 3. More advanced detectors and data acquisition systems.

#### Unfortunately, we don't have Fermi!





The MYRRHA Accelerator Driven System

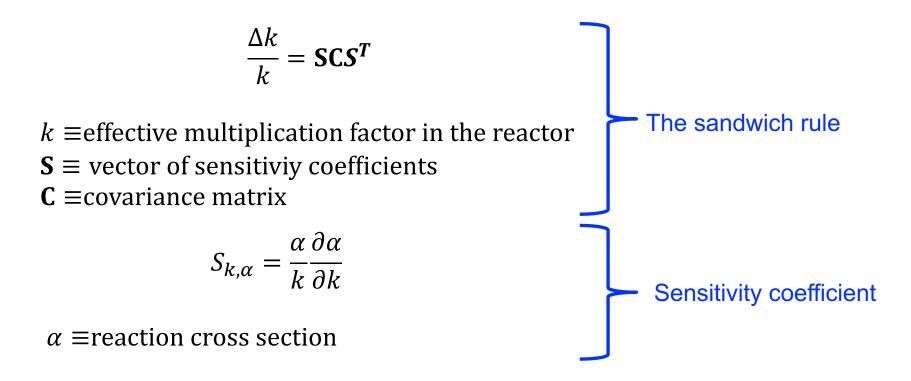
See seminar by:

MINISTERIO DE CIENCIA

**E INNOVACIÓN** 

O. Cabellos on Simulation codes and data processing tools




#### Cierro de Investigaciones Enerréticas, Medioambientales

y Tecnológicas



# Which data are prioritary?

Identification of nuclear data priorities: which data contribute largest to the uncertainty in the parameter calculated.



See seminar & hands-on lectures:

V. Bécares on nuclear data and sensitivity analyses



Ciemate Centro de Investigaciones Energéticas, Medioambientales y Ternológicas



# NEA Nuclear Data High Priority Request List

| HPRL Main |      | High Priority |         | General Requests  | Special Purpose Quantities (SPQ) |        |            | Now Poquest |             | het     | EG-HPRL |        |    |
|-----------|------|---------------|---------|-------------------|----------------------------------|--------|------------|-------------|-------------|---------|---------|--------|----|
|           |      | Requests      | (HPR)   | (GR)              | Standard                         |        | Dosimetry  |             | New Request |         | 51      | (SG-C) |    |
| ID        | View | Target        |         | Reaction          | Quantity                         | En     | ergy range | Sec.E/      | Angle       | Acc     | uracy   | Cov    | Fi |
| 2H        |      | 8-0-16        | (n,a)   | (n,abs)           | SIG                              | 2 M    | leV-20 MeV |             |             | See det | ails    |        | Fi |
| ЗH        |      | 94-PU-239     |         | (n,f)             | prompt g                         | The    | rmal-Fast  | Eg=0-2      | L0MeV       |         | 7.5     | Y      | Fi |
| 4H        |      | 92–U–235      |         | (n,f)             | prompt g                         | The    | rmal-Fast  | Eg=0-3      | L0MeV       |         | 7.5     | Y      | Fi |
| 8H        |      | 1-H-2         |         | (n,el)            | DA/DE                            | 0.1    | MeV-1 MeV  | 0-180       | ) Deg       |         | 5       | Y      | Fi |
| 15H       |      | 95-AM-241     | (n,g)   | (n,tot)           | SIG                              | The    | rmal-Fast  |             | _           | See det | ails    |        | Fi |
| 18H       |      | 92–U–238      |         | (n,inl)           | SIG                              | 65 k   | eV-20 MeV  | Emis s      | spec.       | See det | ails    | Y      | Fi |
| 19H       |      | 94-PU-238     |         | (n,f)             | SIG                              | 9      | keV-6 MeV  |             |             | See det | ails    | Y      | Fi |
| 21H       |      | 95-AM-241     |         | (n,f)             | SIG                              | 180 k  | eV-20 MeV  |             |             | See det | ails    | Y      | Fi |
| 22H       |      | 95-AM-242M    |         | (n,f)             | SIG                              | 0.5    | keV-6 MeV  |             |             | See det | ails    | Y      | Fi |
| 25H       |      | 96-CM-244     |         | (n,f)             | SIG                              | 65     | keV-6 MeV  |             |             | See det | ails    | Y      | Fi |
| 27H       |      | 96-CM-245     |         | (n,f)             | SIG                              | 0.5    | keV-6 MeV  |             |             | See det | ails    | Y      | Fi |
| 32H       |      | 94-PU-239     |         | (n,g)             | SIG                              | 0.1 eV | –1.35 MeV  |             |             | See det | ails    | Y      | Fi |
| 33H       |      | 94-PU-241     |         | (n,g)             | SIG                              | 0.1 eV | –1.35 MeV  |             |             | See det | ails    | Y      | Fi |
| 34H       |      | 26-FE-56      |         | (n,inl)           | SIG                              | 0.5 M  | leV-20 MeV | Emis s      | spec.       | See det | ails    | Y      | Fi |
| 35H       |      | 94-PU-241     |         | (n,f)             | SIG                              | 0.5 eV | –1.35 MeV  |             |             | See det | ails    | Y      | Fi |
| 37H       |      | 94-PU-240     |         | (n,f)             | SIG                              | 0.5    | keV-5 MeV  |             |             | See det | ails    | Y      | Fi |
| 38H       |      | 94-PU-240     |         | (n,f)             | nubar                            | 200    | keV-2 MeV  |             |             | See det | ails    | Y      | Fi |
| 39H       |      | 94-PU-242     |         | (n,f)             | SIG                              | 200 k  | eV-20 MeV  |             |             | See det | ails    | Y      | Fi |
| 41H       |      | 82-PB-206     |         | (n,inl)           | SIG                              | 0.5    | MeV-6 MeV  |             |             | See det | ails    | Y      | Fi |
| 42H       |      | 82-PB-207     |         | (n,inl)           | SIG                              | 0.5    | MeV-6 MeV  |             |             | See det | ails    | Y      | Fi |
| 45H       |      | 19-K-39       | (n,p)   | ),(n,np)          | SIG                              | 10 M   | leV-20 MeV |             |             |         | 10      | Y      | Fu |
| 97H       |      | 24-CR-50      |         | (n,g)             | SIG                              | 1 ke   | V-100 keV  |             |             |         | 8-10    | Y      | Fi |
| 98H       |      | 24–CR–53      |         | (n,g)             | SIG                              | 1 ke   | V-100 keV  |             |             |         | 8-10    | Y      | Fi |
| 99H       |      | 94-PU-239     |         | (n,f)             | nubar                            | The    | rmal-5 eV  |             |             |         | 1       | Y      | Fi |
| 102H      |      | 64-GD-155     | (n,g)   | (n,tot)           | SIG                              | Therm  | al-100 eV  |             |             |         | 4       | Y      | Fi |
| 103H      |      | 64-GD-157     | (n,g)   | (n,tot)           | SIG                              | Therm  | al-100 eV  |             |             |         | 4       | Y      | Fi |
| 114H      |      | 83-BI-209     | (n,g)B: | i-210g <b>,</b> m | BR                               | 500 e  | V-300 keV  |             |             |         | 10      | Y      | AD |
| 115H      |      | 94-PU-239     |         | (n,tot)           | SIG                              | The    | rmal-5 eV  |             |             |         | 1       | Y      | Fi |
| 116H      |      | 3-LI-0        | ( (     | d,x)Be-7          | SIG                              | 10 M   | leV-40 MeV |             |             |         | 10      | Y      | Fu |
| 117H      |      | 3-LI-0        |         | (d,x)H-3          | SIG,TTY                          | 5 M    | leV-40 MeV |             |             |         | 10      | Y      | Fu |
| 118H      |      | 68-ER-167     |         | (n,g)             | SIG,RP                           | 0.01   | eV-100 eV  |             |             |         | 2       | Y      | Fi |

#### https://www.oecd-nea.org/dbdata/hprl/index.html



MINISTERIO DE CIENCIA

E INNOVACIÓN

#### Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



# NEA Nuclear Data High Priority Request List, HPRL

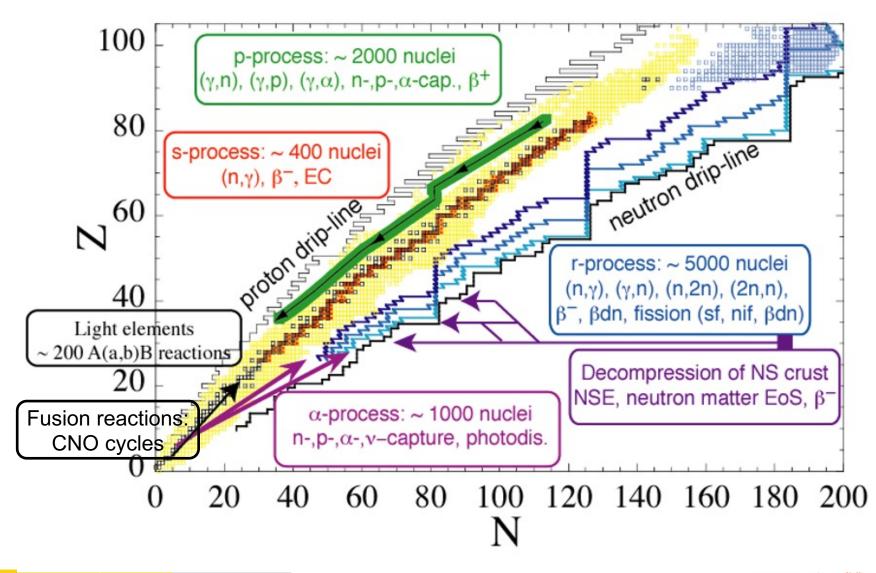
| HPRL Main | High Priority<br>Requests (HPR) | General Requests<br>(GR) | Special Purpose | Quantities (SPQ) | New Request | EG-HPRL<br>(SG-C) |
|-----------|---------------------------------|--------------------------|-----------------|------------------|-------------|-------------------|
|           |                                 |                          | Standard        | Dosimetry        |             |                   |

| Request ID | 32                   |                 | Type of the request       | High Priority request |               |  |  |
|------------|----------------------|-----------------|---------------------------|-----------------------|---------------|--|--|
| Target     | Reaction and process | Incident Energy | Secondary energy or angle | Target uncertainty    | Covariance    |  |  |
| 94-PU-239  | (n,g) SIG            | 0.1 eV-1.35 MeV |                           | See details           | Υ             |  |  |
| Field      | Subfield             | Created date    | Accepted date             | Ongoing action        | Archived Date |  |  |
| Fission    | Fast Reactors (VHTR) | 04-APR-08       | 12-SEP-08                 | Υ                     |               |  |  |

Requested accuracies:






y Tecnológicas

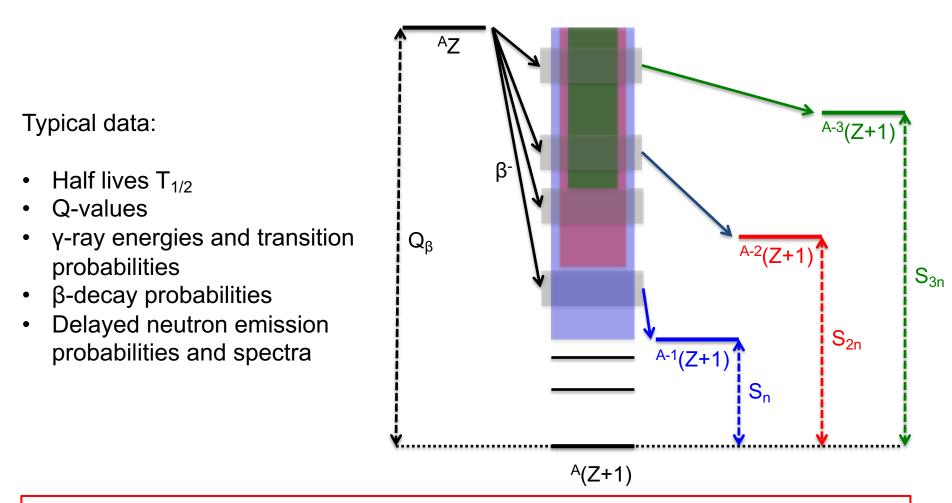
MINISTERIO

DE CIENCIA



## **Nuclear data for nuclear astrophysics**






Ciemate Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas



# β-decay data



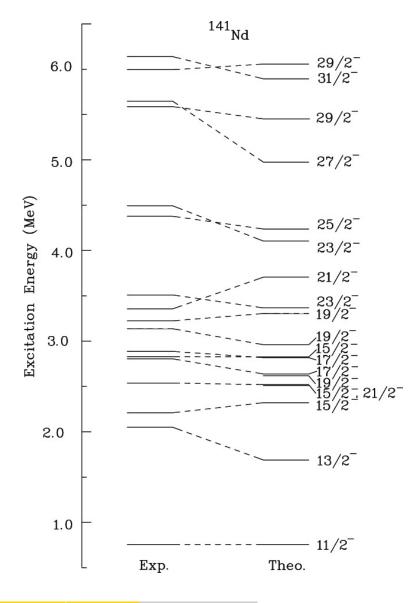
See seminar by B. Rubio *Facilities and experimental techniques: decay data* (accelerators and separators)



MINISTERIO DE CIENCIA

**E INNOVACIÓN** 

#### Cierno de Investigaciones Energéticas. Medioambientales


y Tecnológicas

ARIEL-H2020 International on-line school on nuclear data: the path from the detector to the reactor calculation -- NuDataPath



erc

## Nuclear data for nuclear structure



Comparison of a Shell Model calculation and the experimental level scheme of <sup>141</sup>Nd.

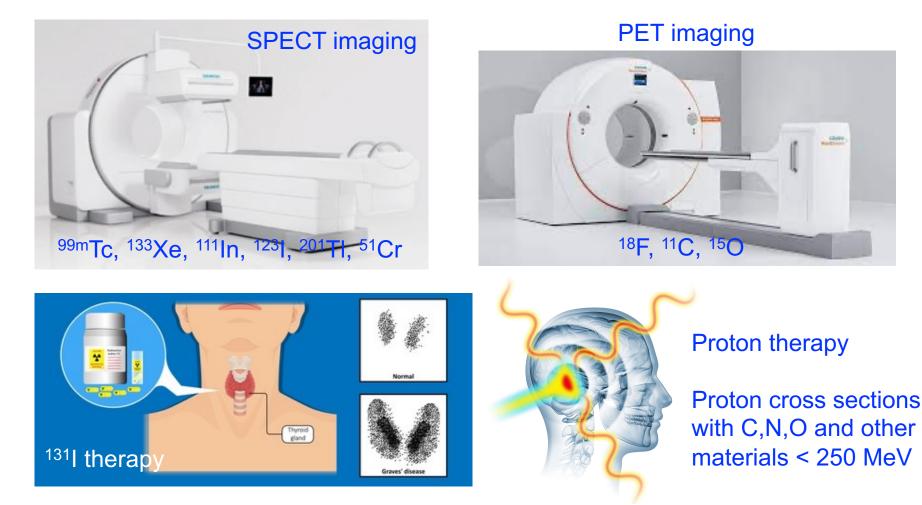
- Excitation energies and spin / parities.
- γ-ray energies and transition probabilities

See seminar by:

• B. Rubio Facilities and experimental techniques: decay data (accelerators and separators)



MINISTERIO DE CIENCIA


**FINNOVACIÓN** 

Ciemate Centro de Investigaciones Energéticas, Medicambientales

y Tecnológicas



# **Nuclear data for medical applications**



See seminar by:

MINISTERIO DE CIENCIA

**E INNOVACIÓN** 

• R. Capote *Nuclear data priorities for non-energy applications* 



#### Centro de Investigaciones Enerréticas. Medioambientales

y Tecnológicas

ARIEL-H2020 International on-line school on nuclear data: the path from the detector to the reactor calculation -- NuDataPath



erc

Some basics about neutron reactions







y Tecnológicas

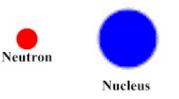


# **Neutron reactions at "low" energies (i.e. < 10 MeV)**

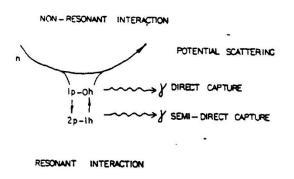
A neutron is absorbed to form a "compound nucle

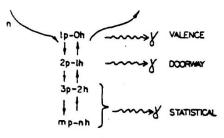
 $n + {}^{A}Z \rightarrow {}^{A+1}Z^*$ 

which lives for a short time and decays:


 $^{A+1}Z^* \rightarrow n + ^{A}Z$  (elastic)

 $^{A+1}Z^* \rightarrow ^{A+1}Z^{*'} + \gamma$  (radiative capture)


 $^{A+1}Z^* \rightarrow ^{A1}Z_1^* + ^{A2}Z_2^* + xn$  (fission)


 $^{A+1}Z^* \rightarrow n + ^{A}Z^*$  (inelastic)

 $^{A+1}Z^* \rightarrow ^{A+1-x}Z^* + xn$  (neutron multiplication)



#### Other contributions:



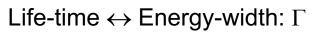




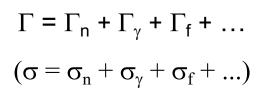


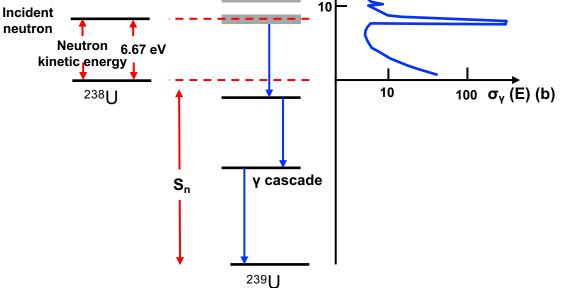
DE CIENCIA

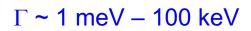
Ε ΙΝΝΟΥΑCΙÓΝ


Cierro de Investigaciones Energéticas, Medioambientales y Tecnológicas

# The compound nucleus (CN)


The CN formation probability is higher for certain neutron energies E<sub>n</sub> corresponding to quasi-bound or virtual states: **resonances** 


 $S_n$ : neutron separation energy of CN ( <10MeV )  $\Rightarrow$ level separation  $D_0 \sim 1 \text{ eV} - 100 \text{ keV}$ 


100



 $E_{R} = S_{n} + \frac{A}{A+1} E_{n}$ 







iemat

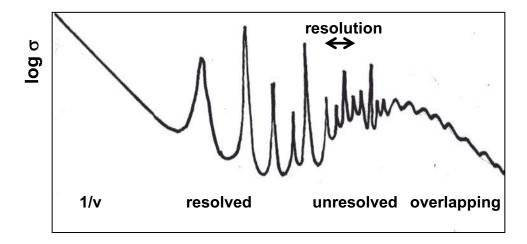
Centro de Investigacione

Energéticas, Medioambientales

y Tecnológicas

O MINISTERIO A DE CIENCIA E INNOVACIÓN




# The shape of a neutron cross-section

1/v: thermal

 $\Gamma < D_0, \Gamma > \Delta E$ : resolved resonance region (RRR)

 $\Gamma < D_0, \Gamma < \Delta E$ : unresolved resonance region (URR)

 $\Gamma > D_0$ : overlapping resonances



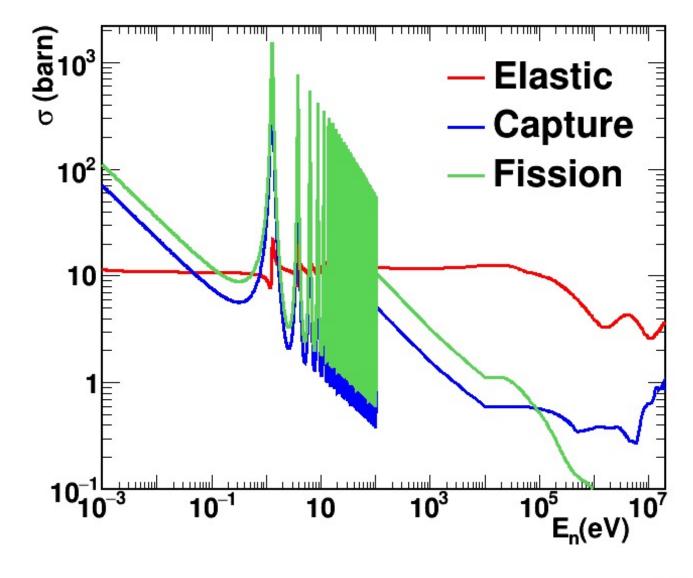
log E<sub>n</sub>

- In the resolver resonance region (RRR), σ is described using the R-Matrix formalism, in one of its usual approximations.
- In the unresolved resonance region (URR), average  $\sigma$  are described by Hauser-Feshbach statistical theory
- At higher energies cross section are described using Optical Model and other reaction models

It is a parametric approach since nuclear theory cannot predict the values.

Experimental information is absolutely necessary.




Ε ΙΝΝΟΥΑCΙÓΝ

Cierro de Investigaciones Enervéticas, Medioambientales

y Tecnológicas



## The case of <sup>239</sup>Pu



GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA E INNOVACIÓN Ciemat

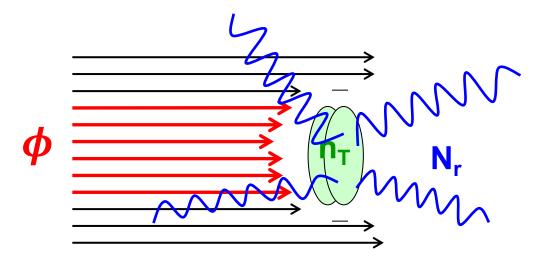
Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas



# **Measurement of differential cross-sections**


Number of reactions

 $\sigma_x(E) =$ 

Number of target nucleus per unit area  $\times$  Number of neutrons of energy E

The proportionality constant  $\sigma$  is the reaction cross section.

It has units of area, and is usually expressed in  $barns = 10^{-24} cm^2$ .



$$\sigma_{x}(E)[barn] = \frac{N_{x}(E)[reactions \cdot s^{-1}]}{n_{T} [atoms \cdot barn^{-1}] \cdot \phi(E)[neutrons \cdot s^{-1}]}$$



DE CIENCIA

INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



Measuring the neutron cross sections requires:

- A facility providing a well characterized neutron beam.

Seminar by A. Junghans on *Facilities and experimental techniques: reactions (neutron beams, reactors)* 

- A detection system for counting the reactions (i.e. detecting the reaction secondaries.

Seminar by C. Guerrero on Detectors and experimental techniques

-A highly pure **sample**.

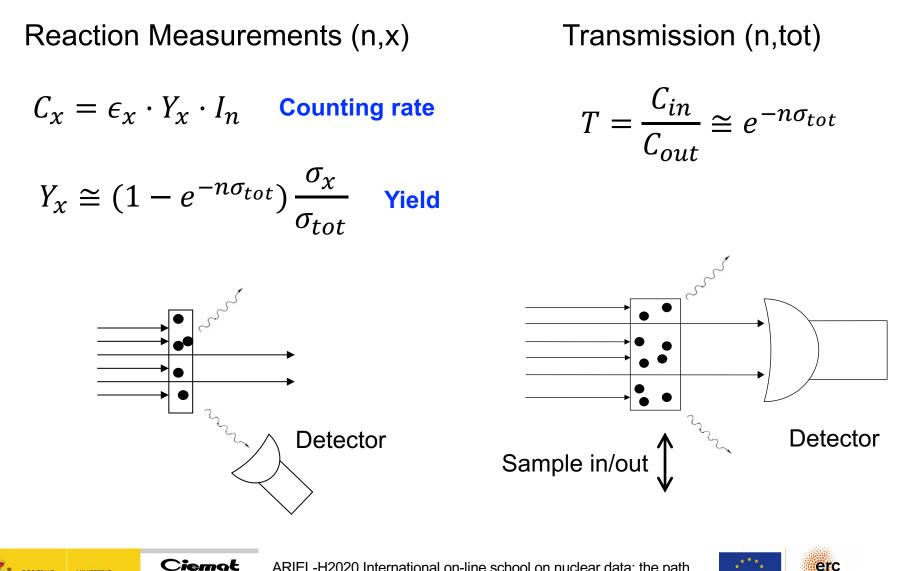
Seminar by E. Maugeri on *Samples for nuclear data experiments* 

- A **theoretical framework and analysis codes** to express the cross sections (*R*-matrix formalism).

See the seminars by

DE CIENCIA

**E INNOVACIÓN** 


- L. Leal on Nuclear data evaluation
- D. Rochman on Automatized nuclear data evaluation

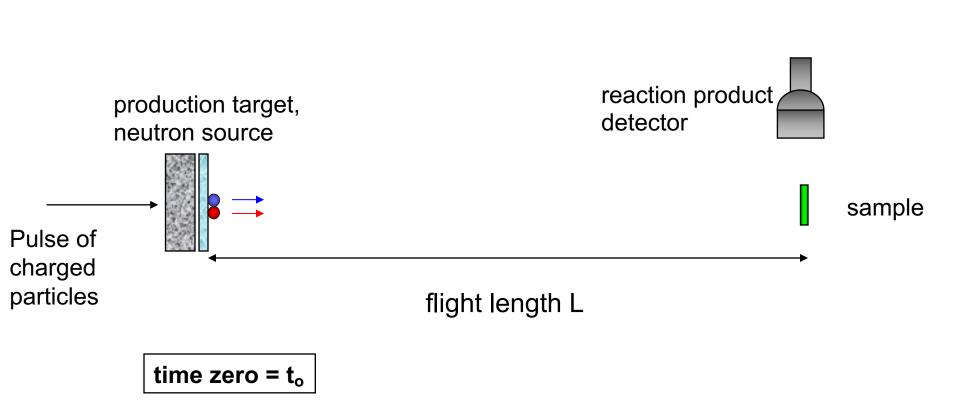


Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



# How to measure cross sections as a function of the energy




INISTERIC DE CIENCIA E INNOVACIÓN

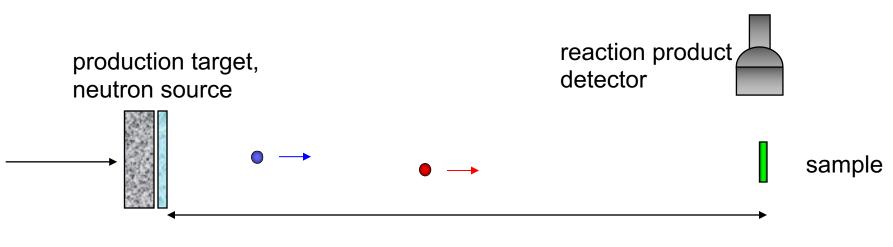
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ARIEL-H2020 International on-line school on nuclear data: the path from the detector to the reactor calculation -- NuDataPath



erc








MINISTERIO

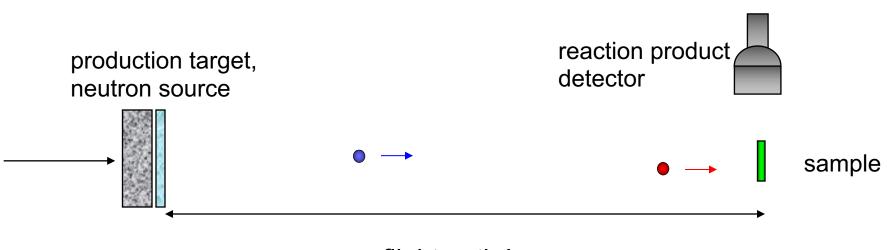
DE CIENCIA





flight path L




MINISTERIO DE CIENCIA

**E INNOVACIÓN** 



y Tecnológicas

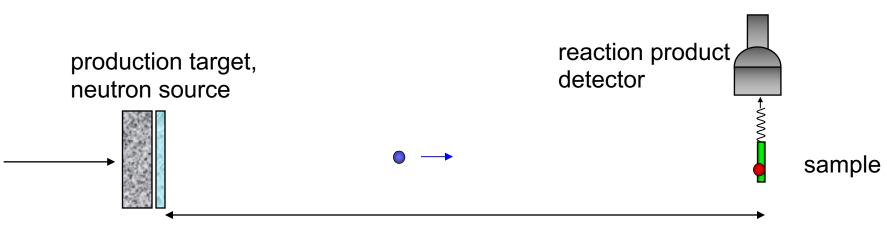




flight path L



MINISTERIO


DE CIENCIA

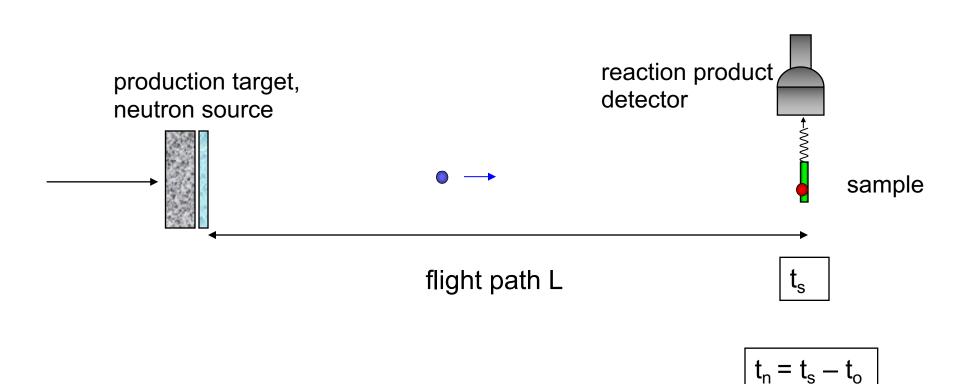
**E INNOVACIÓN** 



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas





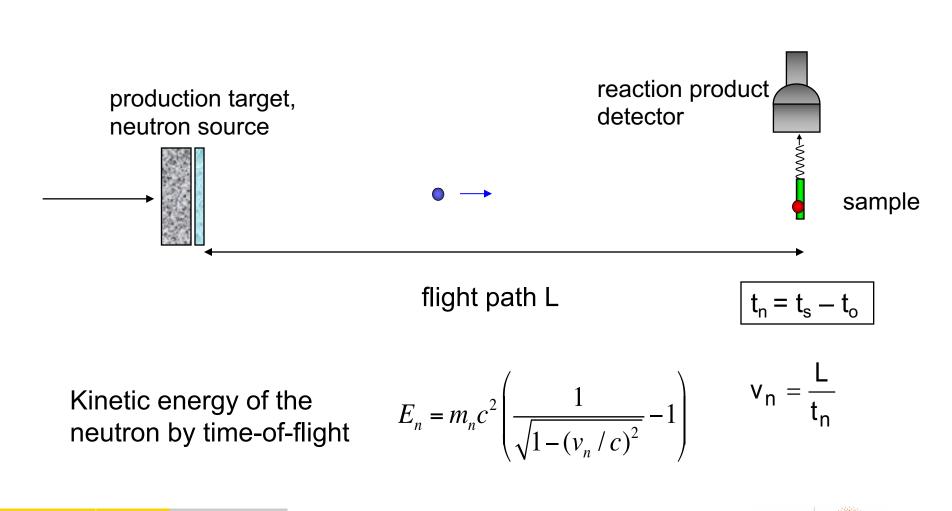

flight path L





Ciernat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas








MINISTERIO DE CIENCIA E INNOVACIÓN Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GOBIERNO

DE ESPAÑA



ARIEL-H2020 International on-line school on nuclear data: the path

from the detector to the reactor calculation -- NuDataPath

erc



MINISTERIO DE CIENCIA

E INNOVACIÓN

iemat

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

There will be hands-on lectures with a **TOF experiment simulator** on:

- Transmission ٠
- Capture cross sections •
- **Fission cross sections** •





MINISTERIO DE CIENCIA



### Integral data and integral experiments

Calculation results (e.g. critical masses, reactor parameters, shielding attenuation lengths...) obtained using measured nuclear data need to be validated in systems representative of the intended applications  $\rightarrow$  *integral vs. differential experiments*.

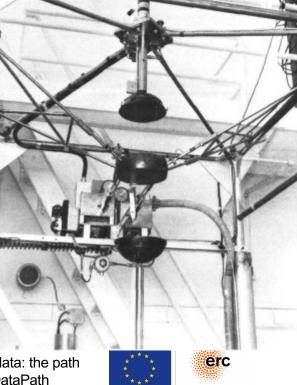
For reactor physics applications, integral experiments are usually conducted in simple, very low ("zero") power, well characterized reactors  $\rightarrow$  (sub)critical assemblies, reactor mock-ups.

In the past, integral experiments constituted the main source of nuclear data.

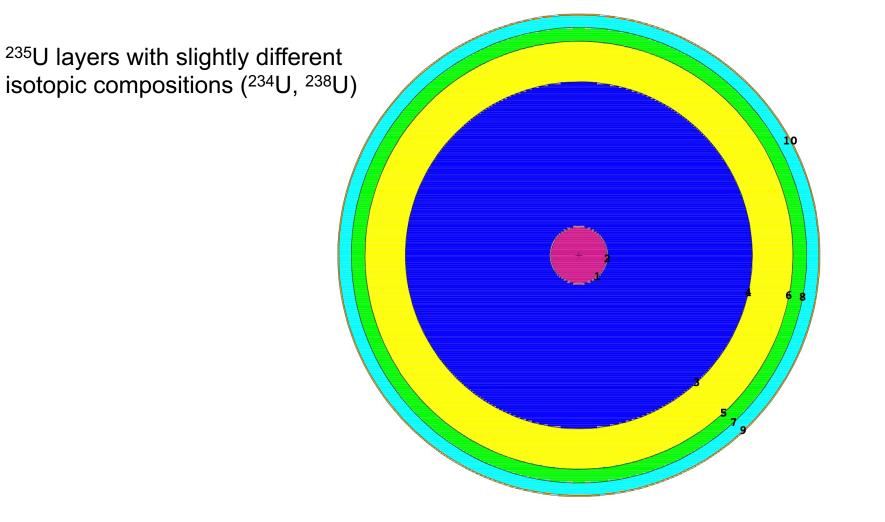
Example: Godiva reactor.

• Los Alamos National Lab (USA).

iemat


Centro de Investigacione

Energéticas, Medioambientales


y Tecnológicas

- First assembled in 1951.
- Bare Highly Enriched Uranium (HEU) sphere (1.02% <sup>234</sup>U, 93.71% <sup>235</sup>U, 5.27% <sup>238</sup>U).
- $k_{eff} = 1.000 \pm 0.001$ .





#### The Godiva model



GOBIERNO DE ESPAÑA

MINISTERIO

DE CIENCIA

**E INNOVACIÓN** 



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



## **Integral experiments (II)**

Databases of integral experimental data:

• International Criticality Safety Benchmark Evaluation Project (ICSBEP)

https://www.oecd-nea.org/jcms/pl\_24498/international-criticality-safetybenchmark-evaluation-project-icsbep

International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE)

https://www.oecd-nea.org/jcms/pl\_20279/international-handbook-of-evaluatedreactor-physics-benchmark-experiments-irphe

• Spent Fuel Isotopic Composition (SFCOMPO)

https://www.oecd-nea.org/jcms/pl\_21515/sfcompo-2-0-spent-fuel-isotopiccomposition

• Shielding Integral Benchmark Archive and Database (SINBAD)

https://www.oecd-nea.org/jcms/pl\_32139/shielding-integral-benchmark-archiveand-database-sinbad

Seminar by O. Cabellos on **Reference integral experiments databases and** validation of nuclear data



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

DE CIENCIA

**E INNOVACIÓN** 

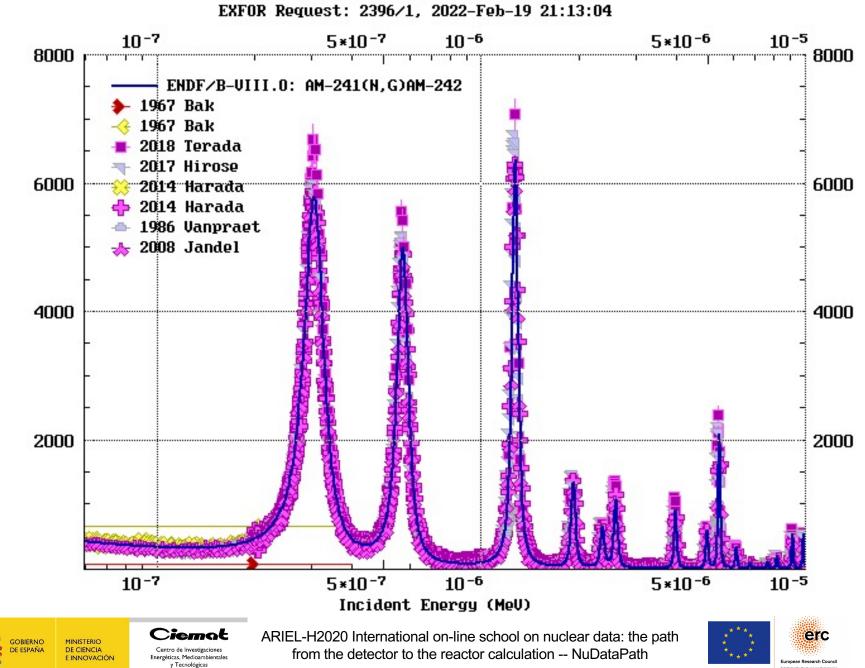


### **Nuclear data evaluation**

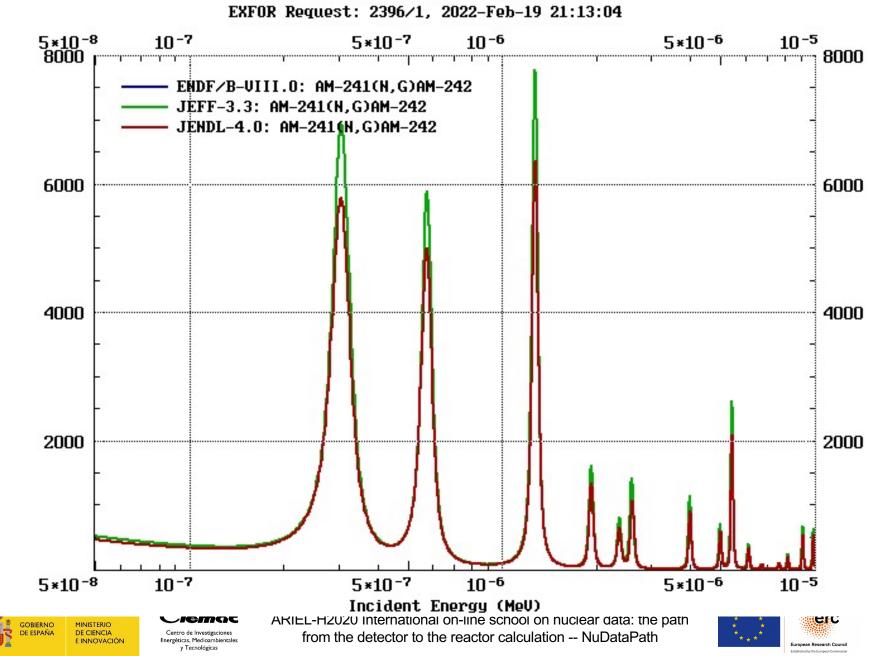
An evaluation is the process of

- analysing measured nuclear data sets (cross sections, secondary particles, nuclear structure) and their uncertainties.
- **combining them with the predictions** of nuclear model calculations
- validating them with integral data / well known macroscopic assemblies,
- Estimating the true value (of a cross section, a particle yield, double differential cross section...)

See the seminars by

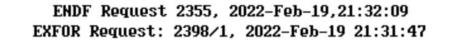

- A. Plompen on the *The JEFF project A. Plompen*
- P. Schillebeeckx on *Identification and propagation of uncertainties*
- L. Leal on *Nuclear data evaluation*
- D. Rochman on Automatized nuclear data evaluation

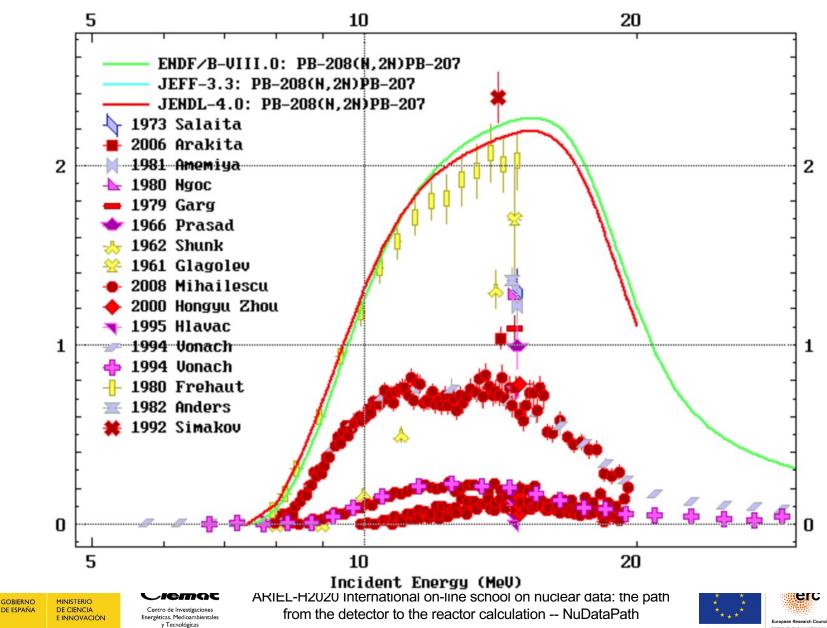



Ciemqe Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

**FINNOVACIÓN** 







ENDF Request 2353, 2022-Feb-19,21:14:35



ENDF Request 2353, 2022-Feb-19,21:19:08

Cross Section (barns)





| NSR XUNDL ENSDF<br>NuDat Databases MIRD<br>Sigma CSISRS ENDF<br>Chart of Nuclides<br>Networks<br>CSEWG USNDF | Atlas of n<br>Empire Resonances<br>Nuclear Tools and<br>Publications<br>Nuclear Data<br>Sheets | Nuclear Structure and Deca<br>Nuclear Structure and Deca<br>Nuclear Structure and Deca<br>Nuclear Reaction Databases<br>Nuclear Reaction Tools<br>Bibliography Databases<br>Networks and Links<br>About the Center<br>Publications<br>Meetings | y Tools                                                                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                              | Low-Fidelity Covariances New ENDF Checking Codes                                               |                                                                                                                                                                                                                                                |                                                                                           |  |  |  |  |
| <u></u>                                                                                                      |                                                                                                | Site Index - Search the NNDC:                                                                                                                                                                                                                  | Go                                                                                        |  |  |  |  |
| AMDC Atomic Mass Data<br>Center, <i>Q-value Calculator</i>                                                   | Atlas of Neutron Resonances<br>Parameters & thermal values                                     | CapGam Thermal Neutron<br>Capture y-rays                                                                                                                                                                                                       | Chart of Nuclides Basic<br>properties of atomic nuclei                                    |  |  |  |  |
| CINDA Computer Index of<br>Nuclear (reaction) Data                                                           | CSEWG Cross Section<br>Evaluation Working Group                                                | CSISRS alias EXFOR Nuclear<br>reaction experimental data                                                                                                                                                                                       | Empire Nuclear reaction model code system, <i>Reference paper</i>                         |  |  |  |  |
| ENDF Evaluated Nuclear<br>(reaction) Data File, <i>Sigma</i>                                                 | ENSDF Evaluated Nuclear<br>Structure Data File                                                 | IRDF International Reactor<br>Dosimetry File                                                                                                                                                                                                   | MIRD Medical Internal Radiation Dose                                                      |  |  |  |  |
| NMMSS & DoE NMIRDC<br>Safeguards & inventory decay<br>data standards                                         | NSR Nuclear Science<br>References                                                              | Nuclear Data Sheets Nuclear<br>structure & decay data journal,<br>Special Issues on reaction data                                                                                                                                              | Nuclear Wallet Cards Ground<br>& isomeric states properties,<br>Homeland Security version |  |  |  |  |
| NucRates MACS & Astro-<br>physical reaction rates                                                            | NuDat Nuclear structure & decay Data                                                           | USNDP U.S. Nuclear Data<br>Program                                                                                                                                                                                                             | XUNDL Experimental Un-<br>evaluated Nuclear Data List                                     |  |  |  |  |
| Sponsored by the Soffic https://www.nndc.bnl.gov/ S. Department of Energy                                    |                                                                                                |                                                                                                                                                                                                                                                |                                                                                           |  |  |  |  |

Acknowledgments - Comments/Questions - Disclaimer

| Section .                                                                                             | ear Data Service<br>Données Nucléaires, Ale<br>1.1 • TENDL-2012 • JENDL-4 • IBANDL New                                                                                                                                                                                                                                                                                                                            | A                                                                                                                                                                                                  | W                                                                                                       | Search                                                                                                                       |                                                                                              |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| equest<br>CD/DVD with<br>documentation,<br>data, codes, etc.                                          | NEW                                                                                                                                                                                                                                                                                                                                                                                                               | JEFF-3.2 - Joint Evaluated Fission and Fusion F<br>IRDFF - International Reactor Dosimetry and Fu<br>CD/DVD-ROMs available for on-line downloadin<br>Portable Empire-3.2.2 for Windows - nuclear r | usion File v1.03 [page] [archive] [retrieve<br>ng [page]<br>reaction model code system for data eva     | e]<br>aluation [page] [download]                                                                                             | <ul> <li>✓ Mirrors</li> <li>✓ Partners</li> </ul>                                            |
| PRO  PRO Traction Data tonuclear alues, Thresholds L ACE                                              | Main   All   Reaction Data   Structu                                                                                                                                                                                                                                                                                                                                                                              | ENSDF                                                                                                                                                                                              | , , , , , , , , , , , , , , , , , , ,                                                                   | S CINDA<br>Nuclear reaction bibliography<br>NSR<br>Nuclear Science References *                                              | Events «1:2» 18 <sup>th</sup> Topical Meeting of tradition Protection 8                      |
| eguards Data<br>naCalc<br>Ilation models<br>cialized Evaluated<br>aries<br>ndards<br>pping Power Data | NuDat 2.6<br>selected evaluated nuclear structure<br>data **<br>PGAA<br>Prompt gamma rays from neutron                                                                                                                                                                                                                                                                                                            | RIPL<br>reference parameters for nuclear model<br>calculations<br>FENDL 3.0<br>Fusion Evaluated Nuclear Data Library, Version                                                                      | IBANDL<br>Ion Beam Analysis Nuclear Data<br>Library<br>Photonuclear<br>cross sections and spectra up to | Charged particle reference cross<br>section<br>Beam monitor reactions<br>IRDFF<br>International Reactor Dosimetry and Fusion | Shielding Division of ANS<br>(RPDS2014)<br>September 14-18, 2014<br>Knoxville, Tennessee, US |
| Light Ions<br>U<br>rmal neutron<br>ture gamma rays                                                    | capture<br>NAA<br>Neutron Activation Analysis Portal                                                                                                                                                                                                                                                                                                                                                              | 3.0<br>Safeguards Data<br>recommendations, August 2008                                                                                                                                             | 140MeV<br>Medical Portal<br>Data for Medical Applications                                               | File<br>Standards<br>- Neutron cross-sections, 2006<br>- Decay data, 2005                                                    |                                                                                              |
| I Layer Activation SD-IAEA Library Edit Cards d Gamma-rays dards                                      | **Database at the JAEA, Vienna<br>**Database at the US NNDC<br>IAEA Nuclear Data Section<br>IAEA-NDS<br>Meetings<br>A+M<br>Atomic<br>and<br>more<br>Meetings<br>Newsletters<br>Data<br>Nuclear Reaction<br>Nuclear Reaction<br>Nuclear Reaction<br>Data Center<br>Network<br>Nuclear Structure<br>& Decay Data<br>Network<br>Nuclear Reaction<br>Nuclear Reaction<br>Nuclear Structure<br>& Decay Data<br>Network |                                                                                                                                                                                                    |                                                                                                         |                                                                                                                              |                                                                                              |

Telephone 😒 (+431) 2600-0. Facsimile (+431) 2600-7. E-mail: nds.contact-point@iaea.org. Read our Disclaimer

Last Updated: 12-September-2014

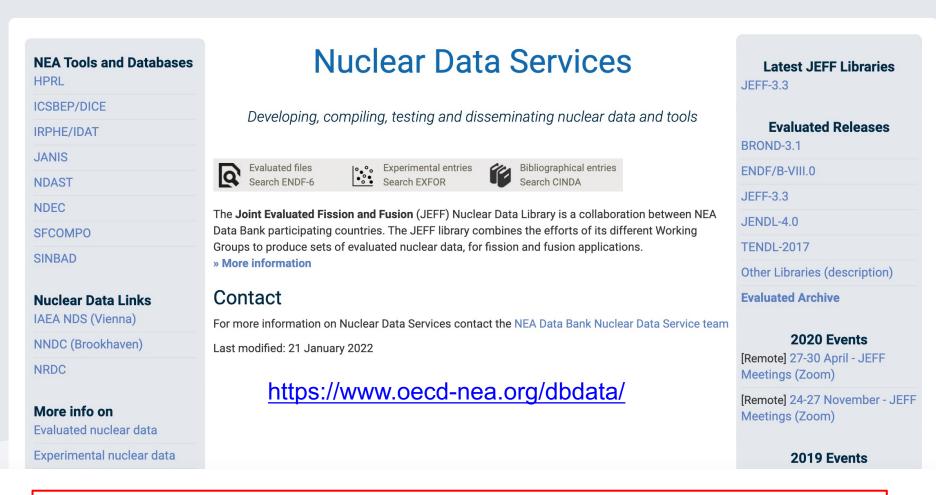
Web design: V.Zerkin, IAEA, 2008

#### https://www-nds.iaea.org/





y Tecnológicas


MINISTERIO

DE CIENCIA

EINNOVACIÓN







#### Seminar by R. Capote on *Dissemination of nuclear data* Hands-on lecture on *Nuclear data visualization tools*



MINISTERIO DE CIENCIA

**E INNOVACIÓN** 

#### Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

ARIEL-H2020 International on-line school on nuclear data: the path from the detector to the reactor calculation -- NuDataPath





erc

### The ENDF evaluated nuclear data format

**ENDF** (currently ENDF-6) was developed for the storage and retrieval of evaluated nuclear data to be used for applications of nuclear technology.

International cooperative effort: the ENDF formats and libraries are decided by the Cross Section Evaluation Working Group (CSEWG).

The ENDF system is logically divided into formats and procedures:

**Formats** describe how the data are arranged in the libraries and give the formulas needed to reconstruct physical quantities such as cross sections, secondary particle distributions (energy, energy – angle)

**Procedures** are restrictive rules that specify what data types must be included and which format can be used.







Each ENDF evaluation is identified by a set of key parameters organized into a hierarchy.

- Library NLIB, a collection of evaluations from a specific evaluation.
- Version NVER, updates to a library in ENDF format. The versions have a revision number.
   NLIB Library Definition

| NLIB | Library Definition                                                       |  |  |  |
|------|--------------------------------------------------------------------------|--|--|--|
| 0    | <b>ENDF/B</b> - United States Evaluated Nuclear Data File                |  |  |  |
| 1    | <b>ENDF7A</b> - United States Evaluated Nuclear Data File                |  |  |  |
| 2    | JEFF - NEA Joint Evaluated Fission and Fusion File (formerly             |  |  |  |
|      | JEF)                                                                     |  |  |  |
| 3    | $\mathbf{EFF}$ - European Fusion File (now part of JEFF)                 |  |  |  |
| 4    | ENDF/B High Energy File                                                  |  |  |  |
| 5    | CENDL - China Evaluated Nuclear Data Library                             |  |  |  |
| 6    | <b>JENDL</b> - Japan Evaluated Nuclear Data Library                      |  |  |  |
| 17   | TENDL - TALYS Evaluated Nuclear Data Library                             |  |  |  |
| 18   | 8 <b>ROSFOND</b> - Russian evaluated neutron data library                |  |  |  |
| 21   | ${f SG-23}$ - Fission product library of the Working Party on Evaluation |  |  |  |
|      | Cooperation Subgroup-23 (WPEC-SG23)                                      |  |  |  |
| 31   | INDL/V - IAEA Evaluated Neutron Data Library                             |  |  |  |
| 32   | INDL/A _ IAEA Nuclear Data Activation Library                            |  |  |  |
| 33   | <b>FENDL</b> - IAEA Fusion Evaluated Nuclear Data Library                |  |  |  |
| 34   | <b>IRDF</b> - IAEA International Reactor Dosimetry File                  |  |  |  |
| 35   | <b>BROND</b> - Russian Evaluated Nuclear Data File (IAEA version)        |  |  |  |
| 36   | <b>INGDB-90</b> - Geophysics Data                                        |  |  |  |
| 37   | $\mathbf{FENDL}/\mathbf{A}$ - FENDL activation evaluations               |  |  |  |
| 41   | <b>BROND</b> - Russian Evaluated Nuclear Data File (original version)    |  |  |  |



MINISTERIO DE CIENCIA

**E INNOVACIÓN** 

#### Ciemat

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



Sublibrary **NSUB**. Set of evaluations for a particular data type.

#### **NSUB** = 10\***IPART**+ITYPE with **IPART**=1000\*Z+A

| NSUB  | IPART | ITYPE | Sub-library Names                      |
|-------|-------|-------|----------------------------------------|
| 0     | 0     | 0     | Photo-Nuclear Data                     |
| 1     | 0     | 1     | Photo-Induced Fission Product Yields   |
| 3     | 0     | 3     | Photo-Atomic Interaction Data          |
| 4     | 0     | 4     | Radioactive Decay Data                 |
| 5     | 0     | 5     | Spontaneous Fission Product Yields     |
| 6     | 0     | 6     | Atomic Relaxation Data                 |
| 10    | 1     | 0     | Incident-Neutron Data                  |
| 11    | 1     | 1     | Neutron-Induced Fission Product Yields |
| 12    | 1     | 2     | Thermal Neutron Scattering Data        |
| 19    | 1     | 9     | Neutron Standards Data                 |
| 113   | 11    | 3     | Electro-Atomic Interaction Data        |
| 10010 | 1001  | 0     | Incident-Proton Data                   |
| 10011 | 1001  | 1     | Proton-Induced Fission Product Yields  |
| 10020 | 1002  | 0     | Incident-Deuteron Data                 |
| 10030 | 1003  | 0     | Incident-Triton Data                   |
| 20030 | 2003  | 0     | Incident-Helion $(^{3}\text{He})$ Data |
| 20040 | 2004  | 0     | Incident-Alpha data                    |

MINISTERIO

DE CIENCIA

**E INNOVACIÓN** 

Cierro de Investigaciones Energéticas, Medioambientales

y Tecnológicas



Material MAT. The target (isotope or a collection of isotopes) in a reaction sub-library, or the radioactive (parent) nuclide in a decay sub-library:

Z01-Z99 for materials from Z=1 to 99 (special numbers for  $Z \ge 100$ )

Z00 for natural elements

Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

INNOVACIÓN

File **MF** subdivision of a material (**MAT**); each file contains data for a certain class of information. MF runs from 1 to 99.

| 6     | MF                                             | Description                                                                |   |  |  |  |  |
|-------|------------------------------------------------|----------------------------------------------------------------------------|---|--|--|--|--|
| 2     | 1                                              | General information                                                        |   |  |  |  |  |
| Ē     | $\frac{1}{2}$                                  | Resonance parameter data                                                   |   |  |  |  |  |
| ŀ     | 3                                              | Reaction cross sections                                                    |   |  |  |  |  |
| •     | 4                                              | Angular distributions for emitted particles                                |   |  |  |  |  |
|       | <b>5</b>                                       | Energy distributions for emitted particles                                 |   |  |  |  |  |
|       | 6                                              | Energy-angle distributions for emitted particles                           |   |  |  |  |  |
| _     | 7                                              | Thermal neutron scattering law data                                        |   |  |  |  |  |
| E     | 8 Radioactivity and fission-product yield data |                                                                            |   |  |  |  |  |
|       | 9                                              | Multiplicities for radioactive nuclide production                          |   |  |  |  |  |
|       | 10                                             | Cross sections for radioactive nuclide production                          |   |  |  |  |  |
|       | 12                                             | Multiplicities for photon production                                       |   |  |  |  |  |
|       | 13                                             | Cross sections for photon production                                       |   |  |  |  |  |
|       | 14                                             | Angular distributions for photon production                                |   |  |  |  |  |
|       | 15                                             | Energy distributions for photon production                                 |   |  |  |  |  |
|       | 23                                             | Photo- or electro-atomic interaction cross sections                        |   |  |  |  |  |
| TERIO |                                                | Ciemol: ARIEL-H2020 International on-line school on nuclear data: the path | e |  |  |  |  |

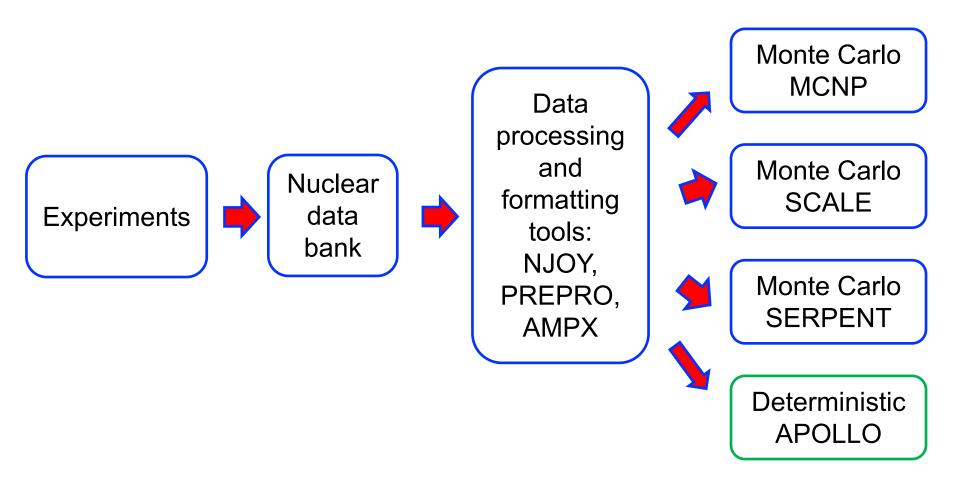
from the detector to the reactor calculation -- NuDataPath



Section MT subdivision of a file (MF); each section describes a particular reaction or a particular type of auxiliary data. MT runs from 1 to 999.

Examples for incident neutrons (could be any incident particle)

| МТ  | Reaction  | Description                                                                             |
|-----|-----------|-----------------------------------------------------------------------------------------|
| 1   | (n,total) | Total cross section                                                                     |
| 2   | (z,z0)    | Elastic cross section                                                                   |
| 4   | (z,n)     | Inelastic cross section (1 <sup>st</sup> excited state + 2 <sup>nd</sup> excited state) |
| 16  | (z,2n)    | Production of 2 neutrons and a residual                                                 |
| 18  | (z,f)     | Neutron induced fission                                                                 |
| 102 | (z,γ)     | Radiative capture                                                                       |
| 107 | (z,α)     | Neutron induced alpha emission                                                          |



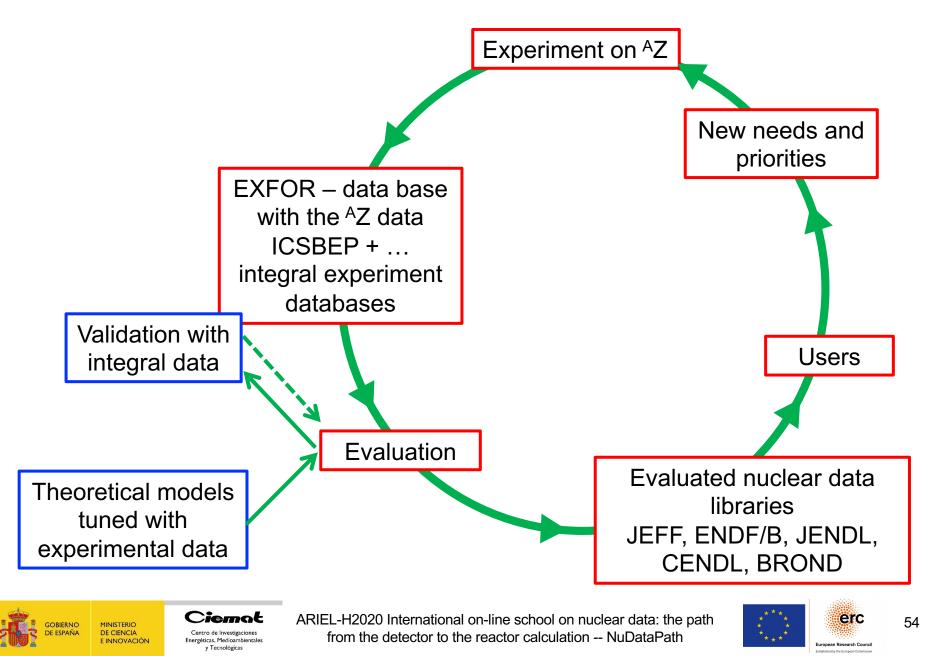



INISTERIO DE CIENCIA



### The nuclear data path








MINISTERIO DE CIENCIA E INNOVACIÓN Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

GOBIERNO

#### The nuclear data cycle



# **ENJOY the school!**





Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

