

Evaluation and propagation of measurement uncertainties

S. Kopecky and P. Schillebeeckx

European Commission

Joint Research Centre, Geel (BE)

NuDataPah, 28 February 2022 CIEMAT

JRC-Geel

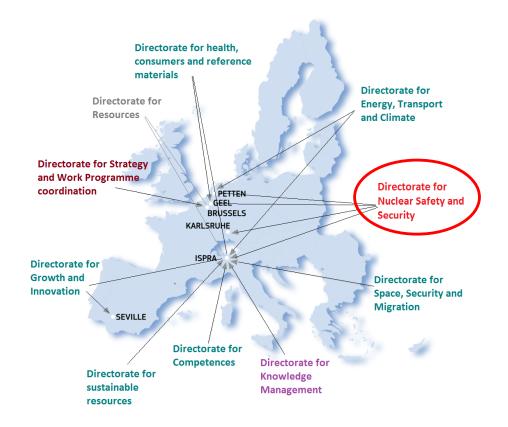
14
major buildings

Around 230 staff

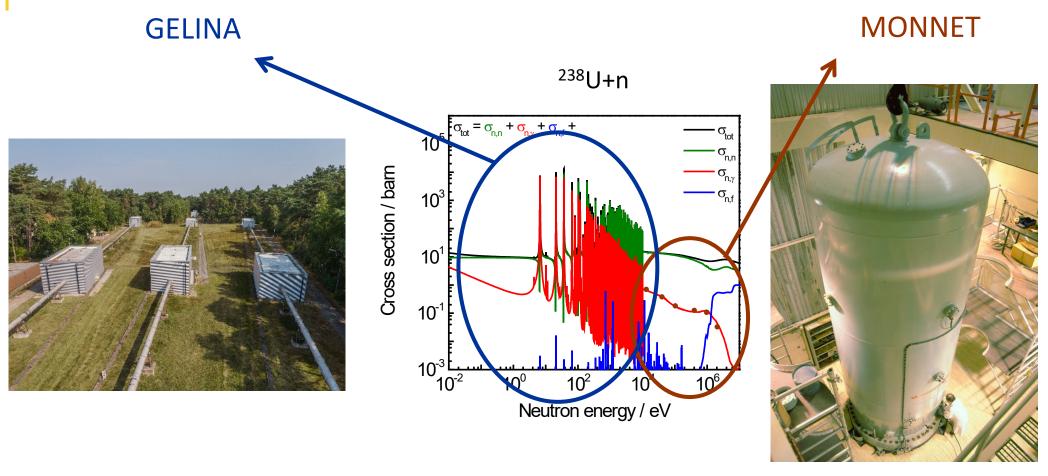
from 4 JRC Directorates

40 ha

Directorate for Nuclear Safety and Security
SN3S Unit: standards for nuclear safety, security and safeguards



Neutron induced cross section measurements



White neutron source + Time-of-flight (TOF)

Mono-energetic neutrons (cp,n) reactions

Contents

- Measurement uncertainty: definition
- Propagation of uncertainties
 - Properties of normal distribution (Gauss)
 - Propagation of uncertainties of uncorrelated input quantities
 - Propagation of uncertainties of correlated input quantities
 - Application to a simple measurement model: Z = K (Y B)
- Evaluation of measurement uncertainties
 - Example 1: neutron capture experiment
 - Normalisation
 - Determination of resonance parameters
 - Example 2: determination of activity by alfa-counting (ANOVA)

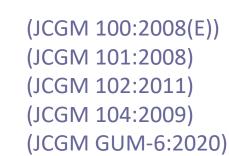
Terminology GUM

Basis: Guides in Metrology published by BIPM

https://www.bipm.org/en/publications/guides

- GUM: Guide to the expression of Uncertainty in Measurement
 - Evaluation of measurements data
 - Supplement 1 Propagation of distribution using a Monte Carlo method
 - Supplement 2 Extension to any number of quantities
 - An introduction to the "GUM" and related documents
 - Guide to the expression of uncertainty in measurement
 Part 6: Developing and using measurement models
- VIM: International Vocabulary of Metrology
 - VIM Basic and general concepts and assiociated terms

Bureau
International des
Poids et
Mesures



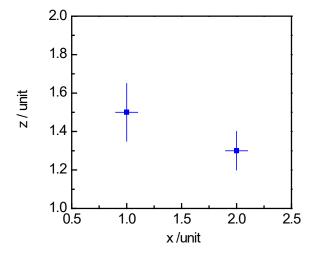
(JCGM 200:2012)

Measurement and uncertainty

- The objective of a **measurement** is to **determine** the **value** of the **measurand** that is, the value of the particular **quantity to be measured**
- Uncertainty of a measurement:
 parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand

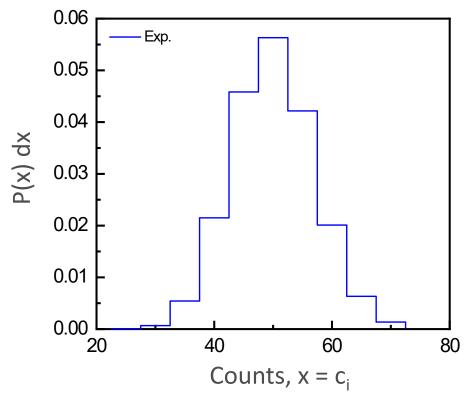
• Result of a measurement is only an approximation or estimate of the value of the measurand and thus is complete only when accompanied by a statement of the uncertainty

of that estimate

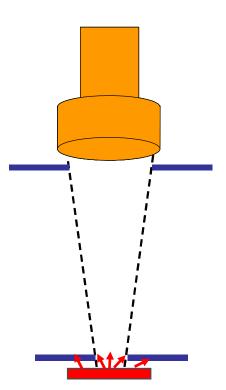


Example: counting experiment

c_i: result of a single counting experiment to estimate the counts C

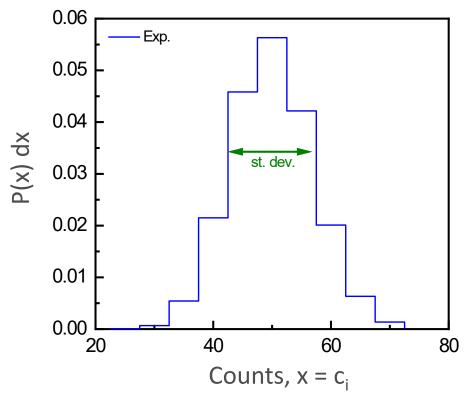


Standard uncertainty is expressed as the standard deviation



Example: counting experiment

c_i: result of a single counting experiment to estimate the counts C



Standard uncertainty is expressed as the standard deviation

Mean:
$$c = \frac{1}{m} \sum_{i=1}^{m} c_i$$

Variance of mean :
$$s_c^2 = \frac{s^2(c_i)}{m}$$

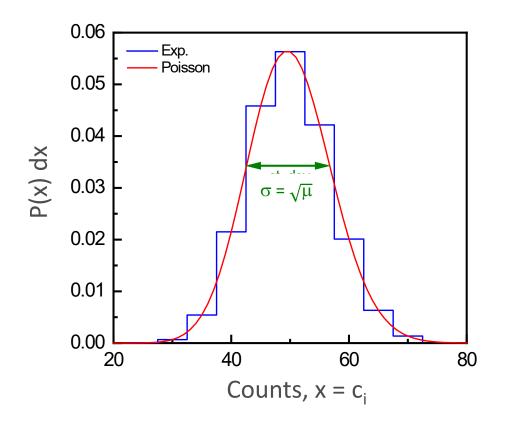
Variance of a single observation :
$$s_{c_i}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (c_i - c)^2$$

Standard uncertainty of c :
$$u_c = \frac{s_{c_i}}{\sqrt{m}}$$

Standard uncertainty of
$$c_i$$
: $u_{c_i} = s_{c_i}$

Example: counting experiment

c_i: result of a single counting experiment to estimate the counts C



Poisson distribution

$$P(c, \mu) = e^{-\mu} \frac{\mu}{c!}$$

Mean : μ

Variance : $\sigma^2 = \mu$

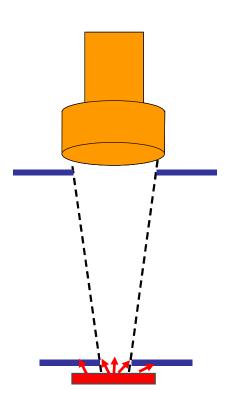
Standard deviation : $\sigma = \sqrt{\mu}$

Result of a single counting experiment

Counts : c_i

Uncertainty : $u_{c_i} = \sqrt{c_i}$

$$\frac{\mathbf{u}_{c_i}}{c_i} = \frac{1}{\sqrt{c_i}}$$



Uncertainty due to counting statistics

Example: α -activity experiment

Determination of activity A_{α} based on α -counting

Measurand : A_{α} (alfa- activity of the sample)

Measurement model : $C_{\alpha} = \varepsilon_{\alpha} \Omega P_{\alpha} A_{\alpha}$

$$A_{\alpha} = C_{\alpha} / (\varepsilon_{\alpha} \Omega P_{\alpha})$$

• Results of counting experiment: $c_{\alpha} = c - b$

sample count rate : c

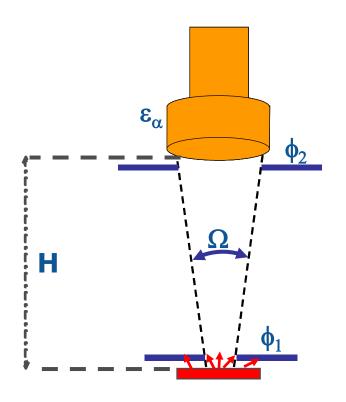
background count rate : b

Other input quantities

 P_{α} : escape probability

 Ω : solid angle depends on (H, ϕ_1 , ϕ_2)

 ε_{α} : detection efficiency



General

Input quantities Output quantity (measurand)

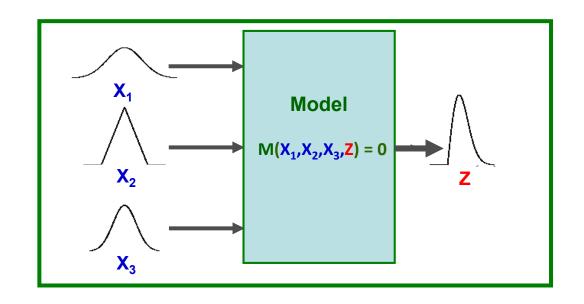
(X₁, X₂, X₃, ...) Model Z

Input

Measurement data

+

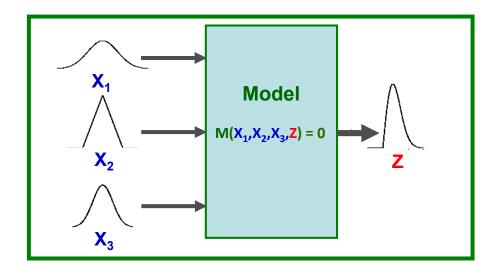
- calibration constants
- influencing quantities
- physics constants, e.g. N_A



General

Input quantities Output quantity (measurand)

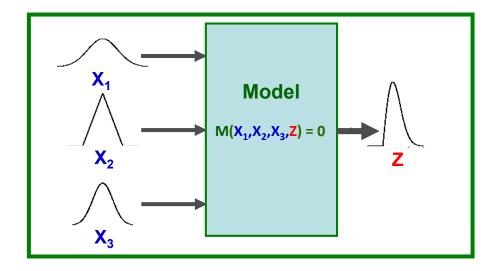
(X₁, X₂, X₃, ...) Model Z



Ideally: define Probability Distribution (PD) of $(X_1, X_2, X_3, ...)$ and transform into PD of Z

- Analytically (deterministic, by transformation of variables) $\phi(y) dy = \phi(x) \left| \frac{dx}{dy} \right| dy$ with y = f(x)
- Monte Carlo simulations (stochastic)

General



Common practice: propagate uncertainties by General Law of Uncertainty Propagation (GLUP), based on:

- Properties of Normal Probability Distribution
- Combined with 1st order Taylor development for non-linear problems

GLUP: independent variables

 (y, u_v) , (b, u_b) and (k, u_k) independent input quantities \Rightarrow estimate of Z

$$Z = Y + B$$
 \Rightarrow $z = y + b$

$$Z = Y - B$$
 \Rightarrow $z = y - b$

$$Z = KY$$
 \Rightarrow $z = ky$

$$u_z^2 = u_y^2 + u_b^2$$

$$u_z^2 = u_y^2 + u_b^2$$

$$u_z^2 = k^2 u_y^2 + y^2 u_k^2$$

$$u_z^2 = k^2 u_y^2 + y^2 u_k^2$$
 $\frac{u_z^2}{z^2} = \frac{u_k^2}{k^2} + \frac{u_y^2}{y^2}$

 (y, u_v) and constant $K \Rightarrow$ estimate of Z

$$Z = KY$$
 \Rightarrow $z = Ky$

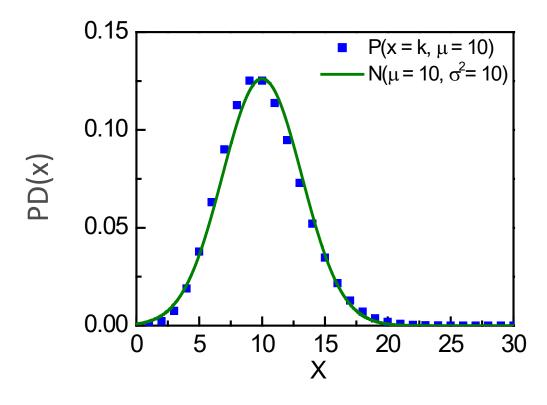
$$u_z^2 = K^2 u_y^2$$

$$\frac{u_z^2}{z^2} = \frac{u_y^2}{y^2}$$

Probability distributions

(1) Poisson distribution to account for uncertainty due to counting statistics

For large μ the distribution approaches a <u>normal distribution</u>



Poisson:
$$P(x = k, \mu) = e^{-\mu} \frac{\mu}{k!}$$

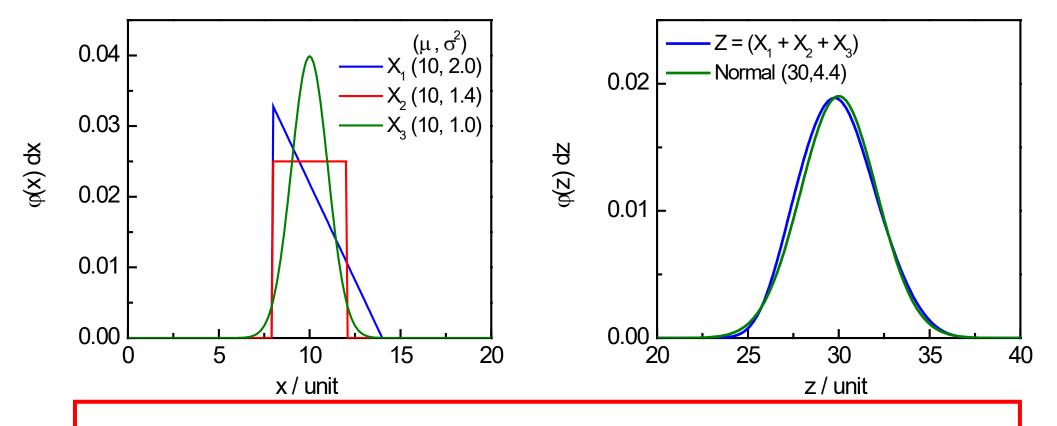
Normal:
$$N(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Probability distributions

- (1) Poisson distribution to account for uncertainty due to counting statistics For large μ the distribution approaches a <u>normal distribution</u>
- (2) Central limit theorem (CLT)

The sum of a large number of independent random variables with a similar distribution (i.e. width) will be approximately <u>normally distributed</u>

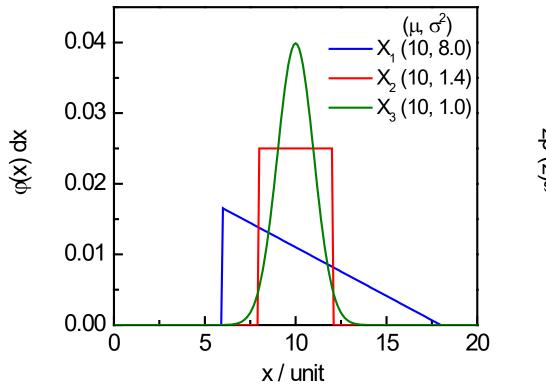
Central limit theorem

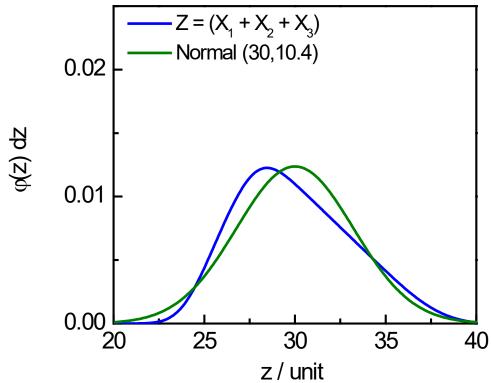


$$Z = \sum_{i=1}^{n} X_i$$
 normal distribution with

$$\mu_z = \sum_{i=1}^n \mu_i \text{ and } \sigma_z^2 = \sum_{i=1}^n \sigma_i^2$$

Central limit theorem





$$\sigma_1 > (\sigma_2 \text{ and } \sigma_3)$$

Probability distributions

- (1) Poisson distribution to account for uncertainty due to counting statistics For large μ the distribution approaches a <u>normal distribution</u>
- (2) Central limit theorem (CLT)
 - The sum of a large number of independent random variables with a similar distribution (i.e. width) will be approximately <u>normally distributed</u>
- (3) Principle of maximum entropy (ME)
 - If only the mean and standard deviation is given, the optimal probability distribution for further inference is the <u>normal distribution</u>
- ⇒ in most cases normal distribution can be assumed

Reporting of uncertainty (JCGM 100:2008 section 7)

- Standard (k = 1) or expanded (k > 1) uncertainty (x, u_x) with $u_x = k s_x$
 - Standard uncertainty

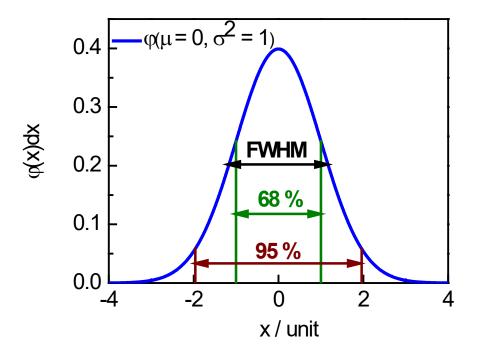
$$k = 1$$
 $\Rightarrow 0.68 \%$

Expanded uncertainty

$$k > 1$$

e.g. $k = 1.96 \Rightarrow 0.95 \%$
 $k = 2.58 \Rightarrow 0.99 \%$

- Reporting example: x = 10.21 with $u_x = 0.25$
 - k = 1 10.21 (25) or 0.21 (0.25)
 - $k > 1 10.21 \pm 0.25$ (specify k)



Note: physicists mostly report a standard uncertainty while chemists mostly report an expanded with k = 2.

Linear function of independent variables

<u>linear function</u> of <u>independent</u> random variables $X_{i=1,...,n}$ with a normal PD with (μ_i, σ_i^2) **Z** :

$$z = \sum_{i=1}^{n} c_i x_i$$

$$c_{i} = \frac{\partial f}{\partial x_{i}} \bigg|_{\mu}$$

 \Rightarrow PD of Z = f(X_i; i,...,n) is a normal distribution with

• Mean
$$E(Z) = \mu_Z = \sum_{i=1}^{n} c_i \ \mu_i$$

• Variance
$$V(z) = \sigma_z^2 = \sum_{i=1}^n c_i^2 \ \sigma_i^2$$

Linear function of independent variables

Z: non-linear function of independent random variables $X_{i=1,...,n}$ with a normal PD with (μ_i, σ_i^2)

1st order Taylor development

$$z \approx f(\mu_1, ..., \mu_n) + \sum_{i=1}^n g_i (x_i - \mu_i)$$
 $g_i = \frac{\partial f}{\partial x_i} \Big|_{\mu_i}$

$$g_{i} = \frac{\partial f}{\partial x_{i}} \bigg|_{\mu_{i}}$$

 \Rightarrow PD of Z = f(X_i; i,...,n) is a normal distribution with

• Mean
$$E(Z) = \mu_{z} \approx f(\mu_{1},...,\mu_{n})$$

• Variance
$$V(z) = \sigma_z^2 \approx \sum_{i=1}^n g_i^2 \sigma_i^2$$

Z = Y - B with estimates $(y_1, u_{y_1}), (y_2, u_{y_2})$ and (b, u_b)

Experiment

```
Independent observables (y_1, y_2) of Y : (y_1, u_{y_1}) and (y_1, u_{y_1})
Background estimate : (b, u_b)
```

- Determine an estimate of Z = (Y-B)
 - 1) Based on input quantities $(y_1, u_{y_1}), (y_2, u_{y_2})$ and (b, u_b) :
 - first define best estimate y of Y
 - -z = y b
 - 2) Based on input quantities (z_1, u_{z_1}) , (z_2, u_{z_2}) with $z_1 = y_1 b$ and $z_2 = y_2 b$

Z = Y - B with estimates $(y_1, u_{y_1}), (y_2, u_{y_2})$ and (b, u_b)

Experiment

Independent observables (y_1, y_2) of Y : (y_1, u_{y_1}) and (y_1, u_{y_1})

Background estimate : (b, u_b)

Report : (y_1,u_{y_1}) , (y_2,u_{y_2}) and (b,u_b)

• Determine an estimate of Z = (Y-B) with input quantities (y_1, u_{y_1}) , (y_2, u_{y_2}) and (b, u_b)

(1) Average of
$$(y_1, y_2)$$
 to estimate Y: $y = \frac{y_1 + y_2}{2}$ $u_y^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4}$ (y_1, y_2) independent

(2) Background subtraction :
$$z=y-b$$
 $u_z^2=u_y^2+u_b^2$

(y,b) independent
$$z = \frac{y_1 + y_2}{2} - b$$
 $u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + u_b^2$

Z = Y - B with estimates $(z_1, u_{z_1}), (z_2, u_{z_2})$

Experiment

Independent observables (y_1, y_2) of Y : (y_1, u_{y_1}) and (y_1, u_{y_1}) $z_1 = y_1 - b$ $u_{z_1}^2 = u_{y_1}^2 + u_b^2$ Background estimate : (b, u_b) $z_2 = y_2 - b$ $u_{z_2}^2 = u_{y_2}^2 + u_b^2$ Report : $(z_1, u_{z_1}), (z_2, u_{z_2})$

• Determine an estimate of Z = (Y-B) with input quantities $(z_1, u_{z_1}), (z_2, u_{z_2})$

Average of
$$(z_1, z_2)$$
 to estimate Z: $z = \frac{z_1 + z_2}{2}$ $u_z^2 = \frac{u_{z_1}^2 + u_{z_2}^2}{4}$ suppose (z_1, z_2) independent

$$z = \frac{y_1 + y_2}{2} - b$$
 $u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + \frac{u_b^2}{2}$

Z = Y - B with estimates (y_1, u_{y_1}) , (y_2, u_{y_2}) and (b, u_b)

Experiment

Independent observables (y_1, y_2) of Y : (y_1, u_{y_1}) and (y_1, u_{y_1}) Background estimate : (b, u_b)

- Determine an estimate of Z = (Y-B)
 - 1) Based on input quantities $(y_1, u_{y_1}), (y_2, u_{y_2})$ and (b, u_b)

$$z = \frac{y_1 + y_2}{2} - b$$
 $u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + u_b^2$

2) Based on input quantities (z_1, u_{z_1}) , (z_2, u_{z_2}) with $z_1 = y_1 - b$ and $z_2 = y_2 - b$ (suppose independent, which is not correct!)

$$z = \frac{y_1 + y_2}{2} - b$$
 $u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + \frac{u_b^2}{2}$

<u>Contribution</u> due to <u>common uncertainty</u> component is <u>not correct</u> <u>Under</u>estimation of the uncertainty due to common component

$$(Z_1 = KY_1, Z_2 = KY_2) \Rightarrow R = Z_1/Z_2$$

Experiment

Independent observable y_1 of Y1 : (y_1, u_{y_1})

Independent observable y_2 of Y_2 : (y_2, u_{y_2})

Normalisation factor K: (k, u_k)

- Determine an estimate of $R = Z_1 / Z_2$
 - 1) Based on input quantities (y_1, u_{y_1}) , (y_2, u_{y_2}) and (k, u_k)

$$r = \frac{ky_1}{ky_2} = \frac{y_1}{y_2}$$

$$\frac{u_r^2}{r^2} = \frac{u_{y_1}^2}{y_1^2} + \frac{u_{y_2}^2}{y_2^2}$$

2) Based on input quantities (z_1, u_{z_1}) , (z_2, u_{z_2}) with $z_1 = ky_1$ and $z_2 = ky_2$ (suppose independent)

$$r = \frac{z_1}{z_2} \qquad \frac{u_r^2}{r^2} = \frac{u_{z_1}^2}{z_1^2} + \frac{u_{z_2}^2}{z_2^2} = \frac{u_{y_1}^2}{y_1^2} + \frac{u_{y_2}^2}{y_2^2} + 2\frac{u_k^2}{k^2}$$

<u>Contribution</u> due to <u>common uncertainty</u> component is <u>not correct</u> <u>Over</u>estimation of the uncertainty due to common component

Linear function of variables (normal PDF)

z: <u>linear function</u> of random variables $x_{i=1,...,n}$ with $(\mu_i = 1,...,n; V_{\vec{x}})$

$$z = f(x_i; i = 1,...,n)$$

$$Z = \sum_{i=1}^{n} c_i X_i$$

$$c_{i} = \frac{\partial f}{\partial x_{i}} \bigg|_{\mu_{i}}$$

Mean

• Independent variables : $\mu_z = \sum_{i=1}^n c_i \, \mu_i$ $\sigma_z^2 = \sum_{i=1}^n c_i^2 \, \sigma_i^2$

Variance

$$\sigma_z^2 = \sum_{i=1}^n c_i^2 \ \sigma_i^2$$

Linear function of variables (normal PDF)

z: <u>linear function</u> of random variables $x_{i=1,...,n}$ with $(\mu_i = 1,...,n; V_{\bar{x}})$

$$z = f(x_i; i = 1,...,n)$$

$$Z = \sum_{i=1}^{n} c_i X_i$$

$$c_{i} = \frac{\partial f}{\partial x_{i}} \bigg|_{\mu_{i}}$$

Mean

• Independent variables :
$$\mu_z = \sum_{i=1}^{n} c_i \mu_i$$

Variance

$$\sigma_z^2 = \sum_{i=1}^n c_i^2 \ \sigma_i^2$$

• Dependent variables :
$$\mu_z = \sum_{i=1}^{n} c_i \mu_i$$

$$\sigma_z^2 = \sum_{i=1}^n c_i^2 \ \sigma_i^2 + \sum_{i \neq j} \sum_j c_i \ c_j \ v_{ij}$$

GLUP: matrix notation, z scalar (1 dim.)

Linear

$$z = C \vec{x}$$

C: dim (1 x n)

$$c_{k} = \frac{\partial f}{\partial x_{k}}$$

$$\mu_z = C \stackrel{\rightarrow}{\mu}_X$$

$$V_z = C V_{\overrightarrow{x}} C^T$$

Non - linear

$$z \approx f(\overrightarrow{\mu}_x) + G_{\overrightarrow{x}}(\overrightarrow{x} - \overrightarrow{\mu}_x)$$

 $G_{\overrightarrow{x}}$: gradient matrix of f

$$g_k = \frac{\partial f}{\partial x_k}$$

$$\mu_{z} \approx f(\vec{\mu}_{x})$$

$$V_z \approx G_{\stackrel{\rightarrow}{x}} V_{\stackrel{\rightarrow}{x}} G_{\stackrel{\rightarrow}{x}}^T$$

Covariance matrix

Mean

 \Rightarrow basis of General Law of Uncertainty Propagation (GLUP) (sandwich formula, $V_7 = G V_x G^T$)

Example: $(y_1, y_2, b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b) \Rightarrow z$

1) Experiment

Independent observables (y_1, y_2) of Y : (y_1, u_{y_1}) and (y_1, u_{y_1})

Background estimate : (b, u_b)

Report estimates of Z = Y-B : (z_1, z_2) and V_{z_1, z_2}

2) Evaluator determines best estimate of Z

Input observables : (z_1, z_2) and V_{z_1, z_2, z_3}

Result : (z, u_z)

GLUP:
$$(y_1,y_2,b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$$

$$\vec{z} = C \vec{x}$$
 $V_{\vec{z}} = G V_{\vec{x}} G^T$

$$\vec{z} = (z_1, z_2)$$
 $\vec{x} = (y_1, y_2, b)$

1) $V_{y_1,y_2,b}$: experimental input quantities, determined by experimental conditions

independent observables⇒ uncorrelated uncertainties

$$V_{y_1,y_2,b} = \begin{bmatrix} u_{y_1}^2 & 0 & 0 \\ 0 & u_{y_2}^2 & 0 \\ 0 & 0 & u_b^2 \end{bmatrix}$$

2) Matrix G: determined by model Z = Y - B

model : $z_1 = y_1 - b$ and $z_2 = y_2 - b$

$$G = \begin{bmatrix} \frac{\partial z_1}{\partial y_1} & \frac{\partial z_1}{\partial y_2} & \frac{\partial z_1}{\partial k} \\ \\ \frac{\partial z}{\partial y_1} & \frac{\partial z_2}{\partial y_2} & \frac{\partial z_2}{\partial k} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

3)
$$V_{z_1,z_2} = G V_{y_1,y_2,b} G^T$$

GLUP: $(y_1,y_2,b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

1) $V_{y_1,y_2,b}$: experimental input quantities,

Independent observables, uncorrelated uncertainties

$$V_{y_1,y_2,b} = \begin{bmatrix} u_{y_1}^2 & 0 & 0 \\ 0 & u_{y_2}^2 & 0 \\ 0 & 0 & u_b^2 \end{bmatrix}$$

2) Matrix G: determined by model Z = Y - B

Model:
$$z_1 = y_1 - b$$
 and $z_2 = y_2 - b$

$$G = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

3)
$$V_{z_1,z_2} = G V_{y_1,y_2,b} G^T$$

$$V_{z_{1},z_{2}} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} u_{y_{1}}^{2} & 0 & 0 \\ 0 & u_{y_{2}}^{2} & 0 \\ 0 & 0 & u_{b}^{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} u_{y_{1}}^{2} & 0 \\ 0 & u_{y_{2}}^{2} \\ -u_{b}^{2} & -u_{b}^{2} \end{bmatrix} = \begin{bmatrix} u_{y_{1}}^{2} + u_{b}^{2} & u_{b}^{2} \\ u_{b}^{2} & u_{y_{2}}^{2} + u_{b}^{2} \end{bmatrix}$$

GLUP: $(y_1, y_2, b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

1) $V_{y_1,y_2,b}$: experimental input quantities,

Independent observables, uncorrelated uncertainties

$$V_{y_1, y_2, b} = \begin{bmatrix} u_{y_1}^2 & 0 & 0 \\ 0 & u_{y_2}^2 & 0 \\ 0 & 0 & u_b^2 \end{bmatrix}$$

2) Matrix G: determined by model Z = Y - B

Model:
$$z_1 = y_1 - b$$
 and $z_2 = y_2 - b$

$$G = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

3)
$$V_{z_1,z_2} = G V_{y_1,y_2,b} G^T$$

$$V_{z_1,z_2} = \begin{bmatrix} u_{y_1}^2 + u_b^2 & u_b^2 \\ u_b^2 & u_{y_2}^2 + u_b^2 \end{bmatrix}$$

The covariance matrix contains a non-zero non-diagonal element, which reflects the contribution of a common uncertainty component

GLUP: $(y_1,y_2,b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b) \Rightarrow z = (z_1+z_2)/2$

Step (1): Determine $(z_1, z_2) = (y_1 - b, y_2 - b)$ and covariance matrix V_{z_1, z_2}

$$(z_1,z_2) = (y_1 - b, y_2 - b)$$
 $V_{z_1,z_2} = \begin{bmatrix} u_{y_1}^2 + u_b^2 & u_b^2 \\ u_b^2 & u_{y_2}^2 + u_b^2 \end{bmatrix}$

Step (2): Determine $z = (z_1+z_2)/2$ and covariance matrix V_z

$$z = \frac{z_1 + z_2}{2} \qquad V_z = G V_{z_1, z_2} G^T \qquad G = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$V_{z} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} u_{y_{1}}^{2} + u_{B}^{2} & u_{b}^{2} \\ u_{b}^{2} & u_{y_{2}}^{2} + u_{b}^{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{u_{y_{1}}^{2} + u_{y_{2}}^{2}}{4} + u_{b}^{2}$$

GLUP: $(y_1,y_2,b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b) \Rightarrow z = (z_1+z_2)/2$

Experimental data (y_1, y_2) and b : independent

(1) Based on reporting full experimental details (y_1, u_{y_1}) , (y_2, u_{y_2}) and (b, u_b)

$$z = \frac{y_1 + y_2}{2} - b$$

$$u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + u_b^2$$

(2) Based on reporting of (z_1, z_2) and V_{z_1,z_2}

$$z = \frac{z_1 + z_2}{2}$$

Full covariance

$$u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + u_b^2$$

Only diagonal terms

$$u_z^2 = \frac{u_{y_1}^2 + u_{y_2}^2}{4} + \frac{u_b^2}{2}$$

Exercise

• Experiment: Independent observables (y_1, u_{y_1}) , (y_1, u_{y_1}) and (b, u_b)

• Model:
$$(y_1, y_2, b) \rightarrow (z_1, z_2) = (y_1 - b, y_2 - b) \rightarrow (v_1, v_2) = (z_1 + z_2, z_1 - z_2) \rightarrow (v_1 + v_2) = 2z_1$$

- Full covariance :
$$u_{2z_1}^2 = 4u_{2z_1}^2 = 4(u_{y_1}^2 + u_b^2)$$

- Only diagonal terms : $u_{2z_1}^2 = 2u_{z_1}^2 + 2u_{z_2}^2 = 2u_{y_1}^2 + 2u_{y_2}^2 + 4u_b^2$

GLUP: $(y_1, ..., y_n, b) \Rightarrow Z = Y - B$

 (y_1,u_{y_1}) , (y_2,u_{y_2}) , ..., (y_n,u_{y_n}) and $(b,u_b) \rightarrow (z_1,u_{z_1})$, (z_1,u_{z_2}) , ..., $(z_n,u_{z_n}) \rightarrow (z,u_z)$ $(y_1,y_2,...,y_n,b)$: independent $z_i = y_i - b$

$$(z_1, z_2, ..., z_n) + V_{\vec{z}}$$

$$V_{z}^{+} = \begin{bmatrix} u_{y_{1}}^{2} + u_{b}^{2} & u_{b}^{2} & \cdots & u_{b}^{2} \\ u_{b}^{2} & u_{y_{2}}^{2} + u_{b}^{2} & \cdots & u_{b}^{2} \\ \cdots & \cdots & \cdots & \cdots \\ v_{z}^{-} & \cdots & \cdots$$

$$\Rightarrow z = \frac{1}{m} \sum_{j=1}^{m} y_j - b$$

$$u_z^2 = \frac{1}{m^2} \sum_{j=1}^m u_{y_j}^2 + u_b^2$$

GLUP: $(y_1,..., y_n, k) \Rightarrow Z = K Y$

$$(y_1,u_{y_1})$$
, (y_2,u_{y_2}) , ..., (y_n,u_{y_n}) and $(k,u_k) \rightarrow (z_1,u_{z_1})$, (z_1,u_{z_2}) , ..., $(z_n,u_{z_n}) \rightarrow (z,u_z)$
 $(y_1,y_2,...,y_n,k)$: independent $z_i = k y_i$

$$(z_1, z_2, ..., z_n) + V_{\vec{z}}$$

$$z = k \frac{1}{m} \sum_{j=1}^{m} y_j$$

$$u_z^2 = \frac{k^2}{m^2} \sum_{j=1}^m u_{y_j}^2 + y^2 u_k^2$$
 $y = \frac{\sum_{j=1}^m y_j}{m}$

$$\frac{u_z^2}{z^2} = \frac{1}{m^2} \frac{\sum_{j=1}^{111} u_{y_j}^2}{y^2} + \frac{u_k^2}{k^2}$$

$$y = \frac{\sum_{j=1}^{m} y_j}{m}$$

Error and uncertainty (JCGM 100:2008 section 3.2)

Measurement error : difference between two values

"result of a measurement minus a true value of the measurand"

```
can be + or -
```

• Measurement uncertainty : dispersion of a distribution

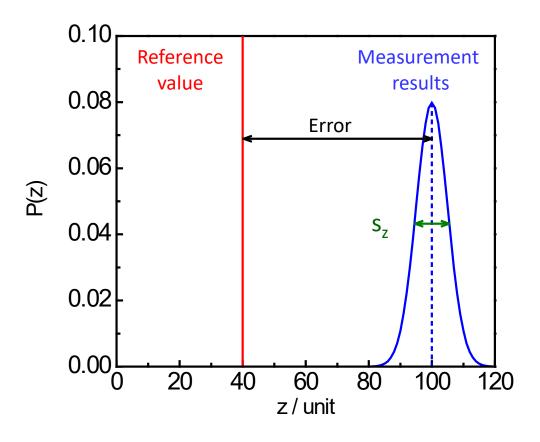
"non-negative parameter characterizing the dispersion of the values being attributed to the measurand"

determined by the width of the PD of the error component(s)

error ≠ uncertainty

Measurement error and uncertainty

z: result of a measurement to estimate the value of quantity Z



Measurement error

Difference between values + or -

Uncertainty

Derived from the standard deviation (width) of a distribution > 0

Measurement error

Systematic error (bias)

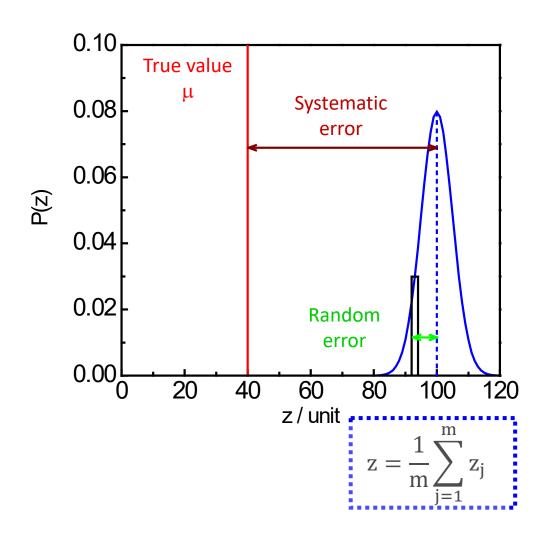
"Mean that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions minus a true value of the measurand."

Random error

"Result of a measurement minus the mean that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions."

Random and systematic error

z_i: result of a single measurement to estimate the value of quantity Z



$$z_i = \mu + \beta_s + \varepsilon_{r,i}$$

• Systematic error : β_s

$$\beta_s = z - \mu$$

• Random error : $\varepsilon_{r,i}$

$$\varepsilon_{r,i} = Z_i - Z$$

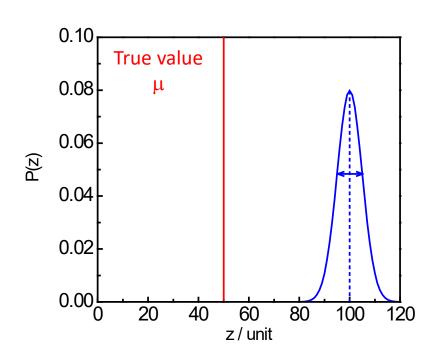
$(y_1, ..., y_n, b) \Rightarrow$ estimate of Z = Y - B

Z : measurand, i.e. quantity of interest, with true value μ

y_i: result of a single experiment to estimate true value of Z

all measurements in same conditions (e.g. measurement time,...)

b : correction for background, z = y - b



$$y = \frac{1}{m} \sum_{j=1}^{m} y_j \qquad u_y = \frac{s_{y_j}}{\sqrt{m}}$$

$$s_{y_j}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (y_i - y)^2$$

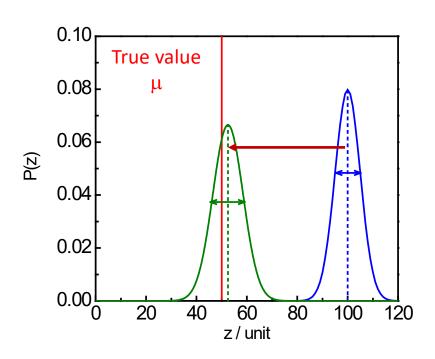
$(y_1, ..., y_n, b) \Rightarrow$ estimate of Z = Y - B

Z : measurand, i.e. quantity of interest, with true value μ

y_i: result of a single experiment to estimate true value of Z

all measurements in same conditions (e.g. measurement time,...)

b : correction for background, z = y - b



$$y = \frac{1}{m} \sum_{j=1}^{m} y_j \qquad u_y = \frac{s_{y_j}}{\sqrt{m}}$$

$$s_{y_j}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (y_j - y)^i$$

⇒ Not correcting for the background results in a systematic error b

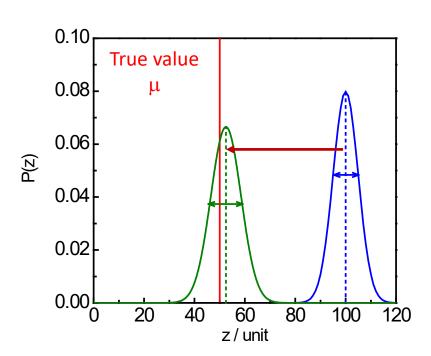
$(y_1, ..., y_n, b) \Rightarrow$ estimate of Z = Y - B

Z : measurand, i.e. quantity of interest, with true value μ

y_i: result of a single experiment to estimate true value of Z

all measurements in same conditions (e.g. measurement time,...)

b : correction for background, z = y - b



$$y = \frac{1}{m} \sum_{j=1}^{m} y_j \qquad u_y = \frac{s_{y_j}}{\sqrt{m}}$$

$$s_{y_j}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (y_j - y)^2$$

$$z = y - b$$
 $u_z = \sqrt{\frac{s_{y_j}^2}{m} + u_b^2}$

- \Rightarrow Not correcting for the background results in a systematic error b
- \Rightarrow Additional uncertainty u_b due to a systematic effect (background)

Measurement precision and accuracy

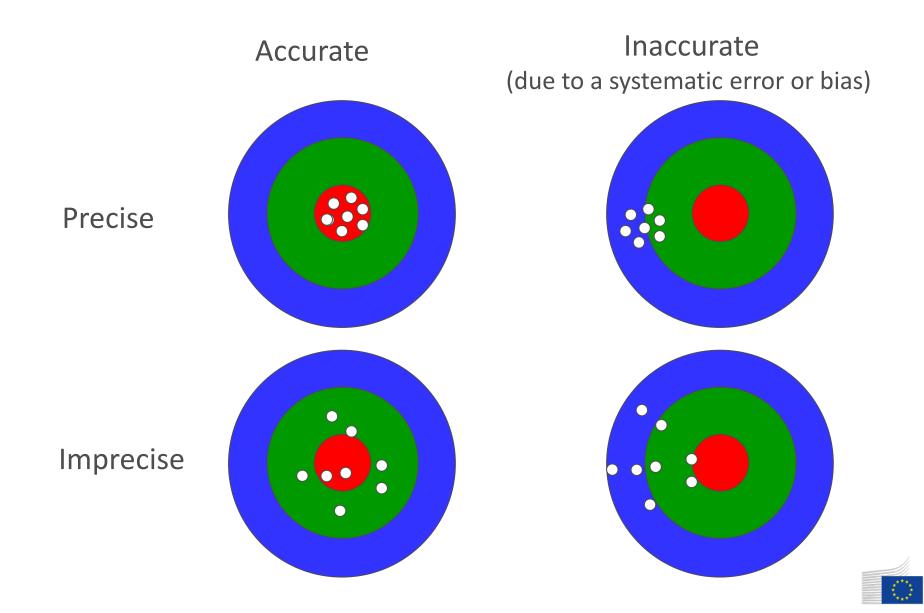
Measurement precision

"Closeness of agreement between indications or measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions"

Measurement accuracy

"Closeness of agreement between a measured quantity value and a true quantity value of a measurand"

Precision ⇔ Accuracy



European

Probability distribution and statistical theory (2 dim.)

P(x,y) theoretical probability density function of (x,y)

Mean

$$\mu_{x} = \iint x P(x,y) dxdy$$

$$\mu_y = \int\!\!\int\! y\, P(x,y)\, dxdy$$

Variance

$$\sigma_x^2 = \int \int (x - \mu_x)^2 P(x, y) dxdy$$

$$\sigma_y^2 = \int \int (y - \mu_y)^2 P(x, y) dxdy$$

Covariance matrix

$$V_{x,y} = \begin{bmatrix} \sigma_x^2 & \sigma_{x,y}^2 \\ \sigma_{x,y}^2 & \sigma_y^2 \end{bmatrix}$$

$$\sigma_{xy}^{2} = \langle (x - \mu_{x})(y - \mu_{y}) \rangle$$
$$= \int (x - \mu_{x})(y - \mu_{y}) P(x, y) dxdy$$

Correlation matrix

$$\rho_{x,y} = \begin{bmatrix} 1 & \rho(x,y) \\ \rho(x,y) & 1 \end{bmatrix}$$

$$p(x,y) = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y}$$

Example: $(y_1, y_2, b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

Experiment

Independent observables (y_1, y_2) of Y : (y_1, u_{y_1}) and (y_1, u_{y_1})

Background estimate : (b, u_b)

Report estimates of Z = Y-B : (z_1, z_2) and V_{z_1, z_2}

$$V_{z_1,z_2} = \begin{bmatrix} u_{y_1}^2 + u_b^2 & u_b^2 \\ u_b^2 & u_{y_2}^2 + u_b^2 \end{bmatrix}$$

- Covariance matrix V_{z_1,z_2} of (z_1,z_2) consists of
 - **Uncorrelated** components (u_{y_1}, u_{y_2}) : contribute only to diagonal elements
 - Correlated component u_b : contributes also to off-diagonal elements
 - \Rightarrow Systematic effect (background) contributes to non-diagonal terms Note: correlated uncertainty component u_b can be due to counting statistics!

Example: $(y_1, y_2, b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

$$z_{1} = y_{1} - b$$

$$z_{2} = y_{2} - b$$

$$v_{z_{1},z_{2}} = \begin{bmatrix} u_{y_{1}}^{2} + u_{b}^{2} & u_{b}^{2} \\ u_{b}^{2} & u_{y_{2}}^{2} + u_{b}^{2} \end{bmatrix}$$

$$b \Rightarrow z_{1}' \text{ and } z_{2}'$$

$$b' \Rightarrow z_{1}' \text{ and } z_{2}'$$

$$c_{x,y} = \begin{bmatrix} 1 & \rho(x,y) \\ \rho(x,y) & 1 \end{bmatrix}$$

$$\rho(x,y) = \frac{u_{xy}^{2}}{u_{x}u_{y}}$$

$$\rho(z_{1},z_{2}) = \frac{u_{b}^{2}}{\sqrt{(u_{y_{1}}^{2} + u_{b}^{2})(u_{y_{2}}^{2} + u_{b}^{2})}}$$

Note: correlation is due to the uncertainty on b

It is different from a correlation due to physics phenomena, e.g.

- linear correlation between position FE peak and γ -ray energy in a Ge-detector
- correlation between altitude and atmospheric pressure

Example: $(y_1, y_2, b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

$$(y_1, u_{y_1}) = (100, 1)$$

 $(y_2, u_{y_2}) = (98, 2)$
 $(b, u_b) = (10.0, 0.1)$

$$(z_1, z_2) = (90, 88)$$

$$V_{z_1, z_2} = \begin{bmatrix} 1.01 & 0.01 \\ 0.01 & 4.01 \end{bmatrix}$$

$$\rho_{z_1,z_2} = \begin{bmatrix} 1 & 0.005 \\ 0.005 & 1 \end{bmatrix}$$

Note: correlation is due to the uncertainty on b

It is different from a correlation due to physics phenomena

Example: $(y_1,y_2,b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

$$(y_1, u_{y_1}) = (100, 1)$$

 $(y_2, u_{y_2}) = (98, 2)$
 $(b, u_b) = (10.0, 1.0)$

$$(z_1, z_2) = (90, 88)$$

$$V_{z_1, z_2} = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$$

$$(z_1, z_2) = (90, 88)$$

$$V_{z_1,z_2} = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$$

$$\rho_{\mathsf{z}_1,\mathsf{z}_2} = \begin{bmatrix} 1 & 0.32 \\ 0.32 & 1 \end{bmatrix}$$

Note: correlation is due to the uncertainty on b It is different from a correlation due to physics phenomena

Example: $(y_1,y_2,b) \Rightarrow (z_1 = y_1 - b, z_2 = y_2 - b)$

$$(y_1, u_{y_1}) = (100, 1)$$

 $(y_2, u_{y_2}) = (98, 2)$
 $(b, u_b) = (10.0, 5.0)$

$$(z_1, z_2) = (90, 88)$$

$$V_{z_1, z_2} = \begin{bmatrix} 26 & 25 \\ 25 & 29 \end{bmatrix}$$

$$(z_1, z_2) = (90, 88)$$

$$V_{z_1,z_2} = \begin{bmatrix} 26 & 25 \\ 25 & 29 \end{bmatrix}$$

$$\rho_{\mathsf{z}_1,\mathsf{z}_2} = \begin{bmatrix} 1 & 0.91 \\ 0.91 & 1 \end{bmatrix}$$

Note: correlation is due to the uncertainty on b It is different from a correlation due to physics phenomena

Final result of a measurement

Input quantities Output quantity (measurand) $(X_1, X_2, X_3, ...) \quad Model \quad Z$ $X_1 \quad X_2 \quad X_3 \quad ...$ $X_1 \quad X_2 \quad X_3 \quad ...$

- Input quantities $(x_1, ..., x_n)$ with V_x
- Model $z = f(x_1, ..., x_n)$

$$g_k = \frac{\partial f}{\partial x_k}$$

How to estimate input covariance V_x ?

Determination of input covariance matrix V_x

• Define measurement model: $z = f(x_1,...,x_n)$

- **Identify** basic **metrological parameters** of the measurement **process**
- Define a model f that starts from independent input quantities
- Example: Z = K (Y-B), e.g. $A_{\alpha} = K (C-B)$

e.g.
$$A_{\alpha} = K(C - B)$$

$$A_{\alpha} = \frac{1}{\varepsilon_{\alpha} \Omega P_{\alpha}} (C - B)$$

1) define independent input quantities

- Experimental observable (y, u_v) (sample measurement)
- Background (b, u_b) (independent background measurement)
- Normalisation (k, u_{ν}) (independent measurement with reference sample)

$$V_{(y,b,k)} = \begin{bmatrix} u_y^2 & 0 & 0 \\ 0 & u_b^2 & 0 \\ 0 & 0 & u_k^2 \end{bmatrix}$$

2) estimate uncertainties of independent input quantities

(see additional slides to estimate uncertainty due to systematic effects for α -activity measurements)

Example: α -activity experiment

Determination of activity A_{α} based on α -counting

Measurand : A_{α} (alfa- activity of the sample)

Measurement model : $c_{\alpha} = \varepsilon_{\alpha} \Omega P_{\alpha} A_{\alpha}$

$$A_{\alpha} = c_{\alpha} / (\epsilon_{\alpha} \Omega P_{\alpha})$$

• Results of counting experiment: $c_{\alpha} = c - b$

sample count rate : c

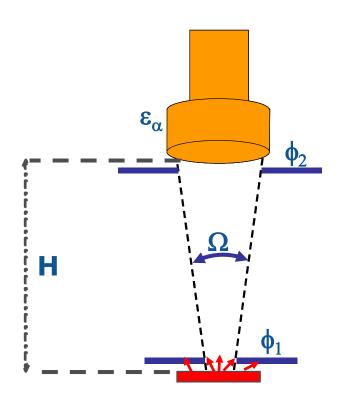
background count rate : b

Other input quantities

 P_{α} : escape probability

 Ω : solid angle depends on (H, ϕ_1 , ϕ_2)

 ε_{α} : detection efficiency



Example: α -activity experiment

- Evaluate the impact of influencing components
 - Target detector geometry (distance target-detector, target position, collimation)
 - High Voltage
 - Long term stability of detector/electronics chain
- Perform a set of replicate measurements under the "same" conditions

```
Experiment 1
```

- (1) position sample, produce vacuum, high voltage on, determine distance
- (2) replicate measurements
- (3) high voltage off, brake vacuum, take sample out

```
Experiment 2
Repeat (1), (2), (3)
...

Experiment k
Repeat (1), (2), (3)
```

Statistical analysis: ANalysis Of VAriance (ANOVA)

Results: α -activity measurements

number of groups : k = 7

number of measurements in each group : $n = n_i = 24$

total number of measurements : N = 168

	j = 1	2	3	4	5	6	7
i = 1	29691	29413	29570	29770	29717	29873	29695
2	29728	29474	29885	29871	30059	29926	29671
	•	•	•	•	•		•
	•	•	•	•	•	•	•
	•	•	•		•		
24	29775	29802	29723	29797	29685	29386	30007
x _j =	29693.21	29769.17	29719.79	29784.00	29730.33	29666.13	29087.46
$S_{r,j} =$	24674.08	28609.10	32532.70	32102.61	23401.71	39917.33	22539.56

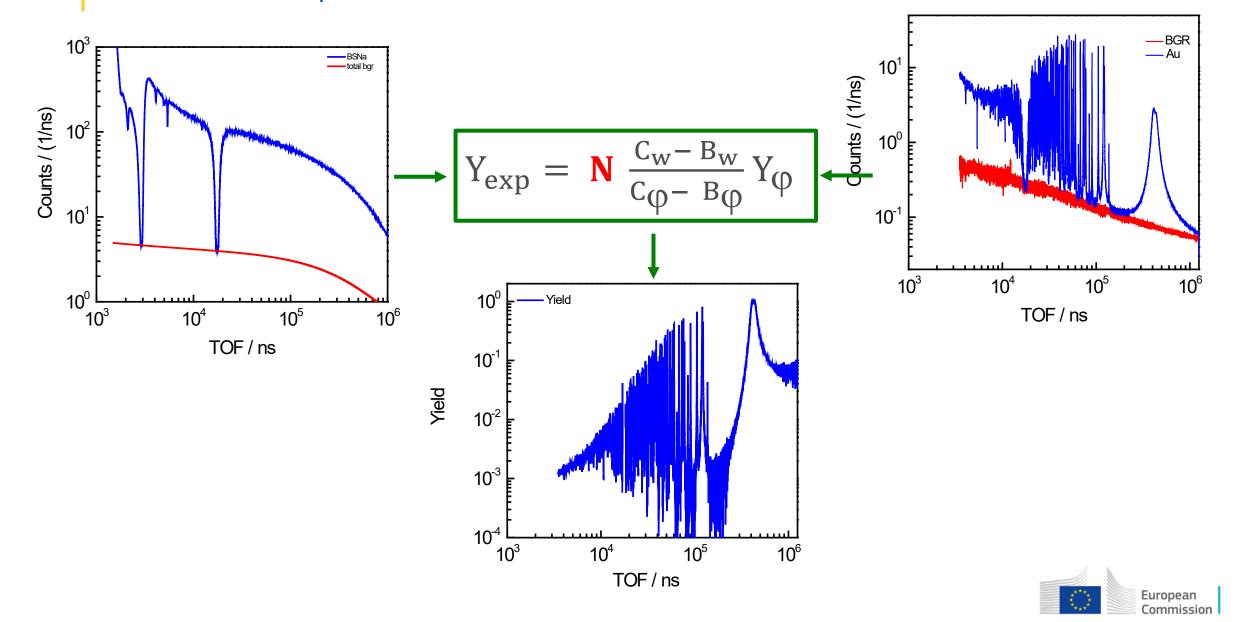
$$x_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij}$$
 $S_{r,j}^2 = \sum_{i=1}^{n_j} (x_{ij} - x_j)^2$

ANOVA table

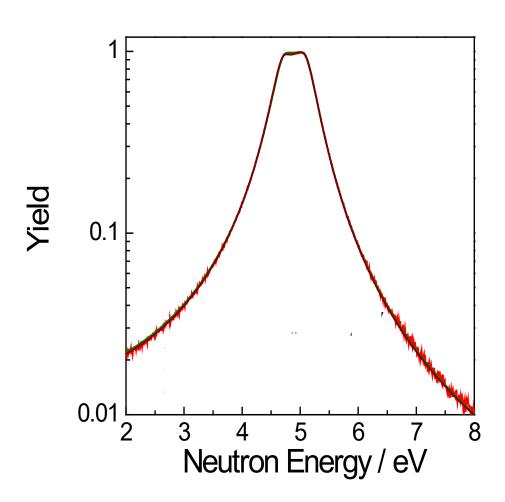
Sum of squares	χ^2	ν	χ^2/ν Expectation value		
$S_g^2 = \sum_{j=1}^k n_j (x_j - x)^2$	= 371330	6	$u_{\epsilon}^2 + n u_{\beta}^2$	= 61888.3	
$S_{r}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - x_{j})^{2}$	= 4686873	167	u_{ϵ}^2	= 29111.0	

$$x = \frac{1}{k} \sum_{j=1}^{k} x_j = \frac{1}{k} \sum_{j=1}^{k} \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij}$$
 $x = 29738.58$ $\Rightarrow u_\beta = 37 \text{ (0.12 \%)}$

Example: Y_{exp} for ¹⁹⁷Au(n, γ)



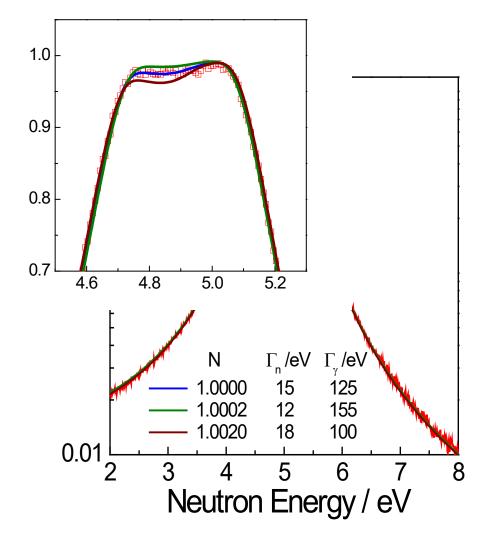
Normalisation at saturated resonance profile



$$\begin{split} Y_{\gamma} &\cong \frac{\overset{-}{\sigma_{\gamma}}}{\overset{-}{\sigma_{tot}}} (1 - e^{-n\overset{-}{\sigma_{tot}}}) + ... \\ & \downarrow \quad \text{n}\sigma_{tot} >> 1 \text{ and } \sigma_{\gamma} \approx \sigma_{tot} \\ & Y_{\gamma} \cong 1 \qquad \qquad Y_{\exp} = N \,\, \frac{C_{w} - B_{w}}{C_{\phi} - B_{\phi}} \, Y_{\phi} \end{split}$$

$$\Rightarrow N \cong \frac{C_{\phi} - B_{\phi}}{C_{w} - B_{w}} \frac{1}{Y_{\phi}}$$

Normalisation at saturated resonance profile



$$\begin{split} Y_{\gamma} &\cong \frac{\overline{\sigma_{\gamma}}}{\overline{\sigma_{tot}}} (1 - e^{-n\overline{\sigma_{tot}}}) + ... \\ & \downarrow \quad n\sigma_{tot} >> 1 \text{ and } \sigma_{\gamma} \approx \sigma_{tot} \\ & Y_{\gamma} \cong 1 \qquad \qquad Y_{exp} = N \; \frac{C_{w} - B_{w}}{C_{\phi} - B_{\phi}} Y_{\phi} \end{split}$$

$$\Rightarrow N \cong \frac{C_{\varphi} - B_{\varphi}}{C_{w} - B_{w}} \frac{1}{Y_{\varphi}}$$

N is independent of :

- sample thickness
- nuclear data

Requires special procedures (weighting function)

Normalisation uncertainty: experimental evaluation

- Perform dedicated experiments to uncertainty due sample properties (systematic effect: β)
 - experiments using samples with different characteristics
 - experiments with similar contribution of random error component (counting statistics) : ε
- Statistical analysis of the data: $u_N^2 = u_E^2 + u_\beta^2 \implies u_\beta \le 0.003$

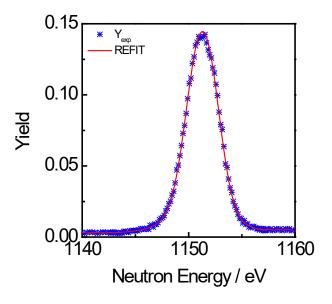
Sample	Diameter	Thickness	N
Au	80 mm	0.05 mm	1.002 (2)
Au	80 mm	0.11 mm	1.001 (2)
Au	80 mm	1.02 mm	0.997 (2)
		Mean	1.000
		Std	0.003

Sample	Diameter	Thickness	N	
Ag	60 mm	0.08 mm	1.005 (4)	
Ag	60 mm	0.18 mm	0.993 (4)	
^{nat} PbAg	60 mm	1.07 mm	0.999 (4)	
²⁰⁶ PbAg	60 mm	1.15 mm	1.003 (4)	
		Mean	1.000	
		Std.	0.005	

Resonance parameters from capture experiments

- Perform dedicated experiments applying different conditions: 56 Fe(n, γ) (systematic effect: β)
 - experiments using normalisation samples with different characteristics (sample, γ -ray emission)
 - capture measurements with different iron samples to determine $\Gamma_{\rm n}$ for the 1.15 keV resoance
 - experiments with similar contribution of random error component (counting statistics) : ϵ
- Analysis of the data: determine normalisation N (previous slides) and $\Gamma_{\rm n}$

Sample	N	g/cm ²		Ø		Γ_{n} / meV
		Fe	Χ	mm		
Fe1	Ag	0.105		60		62.6 (7)
Fe2	Ag	0.394		60		62.5 (7)
Fe3	Ag	0.905		60		60.2 (7)
²⁰⁶ PbFe*	Ag	0.394	1.213	60		63.1 (7)
PbFe*	Ag	0.422	1.103	60		62.6 (7)
PbFe*	Ag	0.422	2.725	60		62.6 (7)
Fe4	Au	0.202		80		61.2 (7)
Fe5	Au	0.795		80		60.3 (7)
Fe6	Au	0.998		80		61.2 (7)
AuFe	Au	1.708	0.118	80		61.3 (7)
Fe ₂ O ₃	Au	1.404	0.603	80		59.1 (7)
-					Mean	61.5
					Std	1.3
					Std (%)	2.1



Resonance parameters from capture experiments

- Perform dedicated experiments applying different conditions (systematic effect: β)
 - experiments using normalisation samples with different characteristics (sample, γ -ray emission)
 - capture measurements with iron samples to determine $\Gamma_{\rm n}$ for the 1.15 keV resoance
 - experiments with similar contribution of random error component (counting statistics) : ϵ
- Statistical analysis of results

Reference value	(transmission): $\Gamma_n = 61.7$ (9) m	eV
recreited value	(cransinission). I n 01.7 (3) in	

Sample	N	g/cm ²		Ø		Γ_{n} / meV
		Fe	Χ	mm		
Fe1	Ag	0.105		60		62.6 (7)
Fe2	Ag	0.394		60		62.5 (7)
Fe3	Ag	0.905		60		60.2 (7)
²⁰⁶ PbFe*	Ag	0.394	1.213	60		63.1 (7)
PbFe*	Ag	0.422	1.103	60		62.6 (7)
PbFe*	Ag	0.422	2.725	60		62.6 (7)
Fe4	Au	0.202		80		61.2 (7)
Fe5	Au	0.795		80		60.3 (7)
Fe6	Au	0.998		80		61.2 (7)
AuFe	Au	1.708	0.118	80		61.3 (7)
Fe ₂ O ₃	Au	1.404	0.603	80		59.1 (7)
					Mean	61.5
					Std	1.3
					Std (%)	2.1

- Difference with reference value is smaller than uncertainty of reference value
- Uncertainty due to systematic effects (normalisation, sample characteristics)

$$\begin{aligned} u_{\Gamma_n}^2 &= u_{\mathcal{E}}^2 + u_{\beta}^2 \\ u_{\varepsilon} &= 0.7 \text{ meV} \end{aligned} \Rightarrow u_{\beta} = 1.1 \text{ meV} \Rightarrow \frac{u_{\beta}}{\Gamma_n} \approx 0.018$$

Evaluation of uncertainty: Type A and Type B

Purpose of Type A and Type B classification is to indicate two different ways of evaluating uncertainty components and is for convenience only; the classification is not meant to indicate that there is any difference in the nature of the components resulting from the two types of evaluation.

Type A

"Statistical analysis of measured quantity values obtained under defined conditions"

"A Type A standard uncertainty is obtained from a probability density function derived from an **observed frequency distribution**"

Type B

"Evaluation of a component of measurement uncertainty by means other than Type A evaluation"

"A type B standard uncertainty is obtained from an **assumed probability density function** based on the degree of belief that an event will occur "

The uncertainty is evaluated by **scientific judgement** based on available information, e.g.:

- previous measurement data
- data provided in calibration and other certificates
- uncertainties assigned to reference data taken from handbooks

Evaluation and propagation of measurement uncertainty

• Define **measurement model:** $z = f(x_1,...,x_n)$

- **Identify** basic **metrological parameters** of the measurement **process**
- Define a model f that starts from independent input quantities
- Example: Z = K (Y-B), e.g. $A_{\alpha} = K (C B)$

e.g.
$$A_{\alpha} = K(C - B)$$

$$A_{\alpha} = \frac{1}{\varepsilon_{\alpha} \Omega P_{\alpha}} (C - B)$$

- 1) define independent input quantities
 - Experimental observable (y, u_v) (sample measurement)
 - Background (b, u_h) (independent background measurement)
- Normalisation (k, u_{ν}) (independent measurement with reference sample)

$$V_{(y,b,k)} = \begin{bmatrix} u_y^2 & 0 & 0 \\ 0 & u_b^2 & 0 \\ 0 & 0 & u_k^2 \end{bmatrix}$$

2) estimate uncertainties of independent input quantities

Summary

- Statistical analysis:
 - is more than just analysing the result of repeated measurements
 - is a powerful tool to reliably estimate and propagate measurement uncertainties
- All uncertainties are "statistical"
 - uncertainties reflect the width of a statistical distribution (uncertainties can be due to counting statistics)
 - uncertainties should be evaluated (estimated) by a statistical analysis
 - such an evaluation requires dedicated experiments
- We differentiate between
 - Random and systematic error and their uncertainties
 - ⇒ Uncertainties due to systematic and random effects
 - Uncorrelated ↔ correlated uncertainty components
 - Note: systematic effects introduce a correlated uncertainty component
 - uncertainties due to counting statistics can contribute to a correlated uncertainty component

Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

EU Science Hub

EU science

Thank you

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

