Evaluation and propagation of
measurement uncertainties

S. Kopecky and P. Schillebeeckx

European Commission

Joint Research Centre, Geel (BE)

NuDataPah, 28 February 2022
CIEMAT




JRC-Geel

Directorate for Nuclear Safety and Security

SN3S Unit: standards for nuclear safety, security and safeguards

ﬁ:::::ﬁ 14 ‘

Directorate for health,

$
. . . d ref
major buildings / \
,/ Directorate for
Directorate for

Energy, Transport
and Climate

Resources

2 3 0 Directorate for Strategy
Arou nd Staﬂ: and Work Programme..

coordination Directorate for

Nuclear Safety and
Security

from 4 JRC Directorates

.

Directorate fy‘smL ¢
Growth and . NDirectorate for
Innovation
\ SEVILLE/{ ] o X i Migration
b
N

\ Space, Security and

Directorate for
Competences Directorate for
< ‘:' /, h 3 Directorate for Knowledge

sustainable

Management
resources

European
Commission




Neutron induced cross section measurements
GELINA MONNET

G

10%
c L
E F
L 10°F
c [
O 3
3 10H-
g N
O 10'F

_3‘5
1010_2 "

Neutron energy / eV

White neutron source

. Mono-energetic neutrons
Time-of-flight (TOF) (cp,n) reactions

European
Commission



Contents

 Measurement uncertainty: definition
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Basis: Guides in Metrology published by BIPM

 GUM: Guide to the expression of Uncertainty in Measurement

https://www.bipm.org/en/publications/guides

— Evaluation of measurements data

— Supplement 1 — Propagation of distribution using a Monte Carlo method
- Supplement 2 — Extension to any number of quantities
— An introduction to the “GUM” and related documents
— Guide to the expression of uncertainty in measurement
Part 6: Developing and using measurement models

* VIM: International Vocabulary of Metrology
— VIM — Basic and general concepts and assiociated terms

Bureau

International des

|

Poids et
{ Mesures

(JCGM 100:2008(E))
(JCGM 101:2008)
(JCGM 102:2011)
(JCGM 104:2009)
(JCGM GUM-6:2020)

(JCGM 200:2012)
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Measurement and uncertainty

* The objective of a measurement is to determine the value of the measurand
that is, the value of the particular quantity to be measured

* Uncertainty of a measurement:

parameter, associated with the result of a measurement, that characterizes the dispersion of
the values that could reasonably be attributed to the measurand

* Result of a measurement is only an approximation or estimate of the value of the

measurand and thus is complete only when accompanied by a statement of the uncertainty
of that estimate 0
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C.

0.06

005-
Q04-
Q03-
Q02-
001-

0.00 =
20 40 60 80

Example: counting experiment

Counts, x = ¢;
Standard uncertainty is expressed

as the standard deviation

. result of a single counting experiment to estimate the counts C
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P(x) dx

Example: counting experiment

¢, : result of a single counting experiment to estimate the counts C
1 m
0.06
| — Exp. Mean : C:—E Cj
m
0.05 |- i=1
' 2
i | s=(cy)
04T Variance of mean: s? = -
0.03 | st. dev. m
[ m
0.02 | , 1 ,
| Variance of a single observation: s¢ = —Z(ci —C)
m-—1
0.01 |- =1
0.00 ! - = Se.
. 1
20 40 60 80 Standard uncertainty of c: U, = —
Counts, x = ¢; vm
Standard uncertainty is expressed ,
Standard uncertainty of ¢;: U, = Sg;

as the standard deviation
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P(x) dx
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Example: counting experiment

. result of a single counting experiment to estimate the counts C

| —Bo

—— Poisson

C\

]

7

\

N

20

40

60

Counts, x = ¢;
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Poisson distribution

T
P(C) “) = € ME
Mean U
Variance 6% =1

Standard deviation : ¢ = /.

Result of a single counting experiment

Counts DG

Uncertainty D Ue = /G
Y _ L
i G

Uncertainty due to counting statistics
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Example: a-activity experiment
Determination of activity A, based on a-counting
Measurand : A (alfa- activity of the sample)

Measurement model :C,=¢e, QP A,

A,=C,[(e,QP,)

e Results of counting experiment: ¢, =c-b

E
!
!
sample count rate . C EH RN
background countrate : b : Lo
i Vo
e Other input quantities : o0

PO(,
Q :solid angle depends on (H, ¢4, ¢, )

. escape probability

e, . detection efficiency

(0
European
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General

Input quantities =P Qutput quantity (measurand)

(X, X, X3, ..) Model Z
Input
* Measurement data /X\
1 Model
4.
. . /\—» M(X,,X,,X3,Z) = 0 —}J\
e calibration constants X, z
* influencing quantities /\ N
* physics constants, e.g. N, X,
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General

Input quantities === Qutput quantity (measurand)

(X3 Xy X3, ) Model 7
/\_>
" Model
/\_’ M(Xy,X5,X5,Z) =0 1&

X,
/\
X3

Ideally : define Probability Distribution (PD) of (X,X,,X;, ...) and transform into PD of Z

— Analytically (deterministic, by transformation of variables) #(y)dy = e(x)

Monte Carlo simulations (stochastic)

d—X‘ dy withy="f(x)
dy
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General

Input quantities === Qutput quantity (measurand)
(X, X, X3, ..) Model Z

Model
/\_’ M(Xy,X,,X5,Z) = 0 #
X, y
/\
X3

Common practice: propagate uncertainties by General Law of Uncertainty Propagation (GLUP),
based on:
— Properties of Normal Probability Distribution

— Combined with 1t order Taylor development for non-linear problems
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GLUP : independent variables

(v uy), (b, u,) and (k, u,) independent input quantities = estimate of Z

Z=Y+B = z=y +b uz = u? + ug
7=Y-B = z=y-b uz = u? + ug
2 2 2
u; ug u
L=RY = z=ky uz = kuy +y“ui Z§=k§+y_§
(¥, u,) and constant K = estimate of Z
w2 ul
Z =KY =  z=Ky u; = K%ug A
72 y2
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Probability distributions

(1) Poisson distribution to account for uncertainty due to counting statistics

For large u the distribution approaches a hormal distribution

PD(x)

0.15
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0.05

0.00

m P(x=k, pu=10)
N(n= 10, o’= 10)

Poisson :

Normal :

P(x=k, )

N(x,u,0) =

1
oV2T1
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k!

e

2 (55
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Probability distributions

(1) Poisson distribution to account for uncertainty due to counting statistics

For large u the distribution approaches a hormal distribution

(2) Central limit theorem (CLT)

The sum of a large number of independent random variables with a similar
distribution (i.e. width) will be approximately normally distributed
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Central limit theorem

2
0.04 H,o) —Z=(X, + X+ X)
—X, (10, 2.0) 0.02 L—— Normal (30,4.4)
' ——X, (10, 1.4) '
0.03 | ——X, (10, 1.0)
x N
© - ©
0.01 & !
0001 4l 1IN 0.00 S R
0 ) 10 15 20 20 25 30 35 40
X/ unit z / unit
n n 2 D 5
Z =Y Xi normal distribution with Mz = Z1Mi and Oz = 2.0;
i=1 1= i=1
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Central limit theorem

0.04} (1 o) —Z= (XX, +X)
' —X, (10, 8.0) —— Normal (30,10.4)
L _______)(é (1() 1 Zl ().():2 =
0.03 } ——X, (10, 1.0)
35 3
3 N
s 00zr ® oot
N
0.01 F I
OOO 1 1 J ] m OOO ] 1 ] 1 ] ]
0 5 10 15 20 20 25 30 35 40
X / unit z / unit

G, > (o, and ;)
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Probability distributions

(1) Poisson distribution to account for uncertainty due to counting statistics

For large u the distribution approaches a normal distribution

(2) Central limit theorem (CLT)

The sum of a large number of independent random variables with a similar
distribution (i.e. width) will be approximately normally distributed

(3) Principle of maximum entropy (ME)

If only the mean and standard deviation is given, the optimal probability
distribution for further inference is the normal distribution

— in most cases normal distribution can be assumed
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Reporting of uncertainty (JCGM 100:2008 section 7)

 Standard (k = 1) or expanded (k > 1) uncertainty (x, u,) withu, =k's,

— Standard uncertainty

k=1 — 0.68 % 0.4 l—0m=0,6%=1)
- Expanded uncertainty 03 _
k>1 5 !
e.g. k=1.96=0.95% = 02}
k=2.58=0.99% o1l
* Reporting example: x = 10.21 with u, =0.25 0.0 '
4 -2 0 2 4

- k=1 10.21(25) or0.21 (0.25)
- k>1 10.21 +0.25 (specify k)

Note: physicists mostly report a standard uncertainty while chemists mostly report an expanded with k = 2.
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Linear function of independent variables

Z: linear function of independent random variables X;_, | with a normal PD with (u;, ;)

N

= PD of Z = f(X;; i,...,n) is @a normal distribution with

n

* Mean E(Z) =, :Zci WL

® Variance V(z)=0o
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Linear function of independent variables

Z : non-linear function of independent random variables X;_, _, with a normal PD with (p;, ;%)

o,

15t order Taylor development

of

n
z zf(pl,...,un)+zgi (X — 1) BT o
i1 iy,

= PD of Z = f(X;; i,...,n) is @a normal distribution with

* Mean E(Z)=p, = f(uqg,....1n,)

n
* Variance Viz)=0; ~ ) gf of
i=1
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Z =Y — B with estimates (y,, uy1)' (Y,, uyz) and (b, u,)

* Experiment

Independent observables (y,,y,) of Y : (y,, UV1) and (y,, UV1)

Background estimate : (b, up)

* Determine an estimate of Z = (Y- B)

1) Based on input quantities (y,, uy1)' (Y, uyz) and (b, u,):
- first define best estimate y of Y
-z=y-b

2) Based oninput quantities (z, u, ), (z,, u, ) withz, =y, —band z, =y, - b

European
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Z =Y — B with estimates (y,, uy1)' (Y,, uyz) and (b, u,)
* Experiment

Independent observables (y,,y,) of Y : (y,, UV1) and (y,, UV1)
Background estimate : (b, up)

RepOrt : (ylluyl)l (y21uy2) and (b)ub)

* Determine an estimate of Z = (Y- B) with input quantities (y,, uyl), (Y, uyz) and (b,u,)

2 2
(1) Average of (y,, y,) to estimate Y: y = . ug 14 2
(V.,Y,) independent
(2) Background subtraction . Z=y —b u% — u}2, | u%
. .
+ ug., +u
(y,b) independent , = Y1tz _ uZ yaitlys u%

2
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Z =Y - B with estimates (z,, u, ), (z,, u,,

* Experiment

— — 2
Independent observables (y,,y,) of Y : (y,, UV1) and (y,, UV1) z;=y;—b uj = u}z’l T Uy,
Background estimate : (b, uy) Z, =y, —b ui = ui +uj
Report : (zpu,), (2p,0,)

* Determine an estimate of Z = (Y- B) with input quantities (z,, uzl), (z,, u,,

2 2
, Z1+z us, +us
Average of (z,, z,) to estimate Z: Z = % uZ = %
suppose (z,,z,) independent
2 2 2
1+ 2 u +u u
7="122_p yli= L2 4D

4 2
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Z =Y — B with estimates (yl,uyl), (yz,uyz) and (b,u,)

* Experiment

Independent observables (y,,y,) of Y : (y,, UV1) and (y,, UV1)

Background estimate : (b, up)
* Determine an estimate of Z = (Y- B)

1) Based on input quantities (y,, uy1)' (Y, uyz) and (b, u,)

2 2
+ Uy, +Uu
Z=Y1 Yz_b u%: }’14 y2 +uf,

2

2) Based oninput quantities (z, u, ), (z,, u, ) withz, =y, —band z, =y, - b
(suppose independent, which is not correct!)
2 2 2
+ uy. +u u
Z:Y1 Yz_b U%Z yi' V2 4 b
2 4 2

Contribution due to common uncertainty component is not correct
Underestimation of the uncertainty due to common component

European
Commission




(Z,=KY,, Z,=KY,) =>R=2,/Z,

* Experiment

Independent observable y, of Y1 2 uyl)
Independent observable y, of Y, 2 uyz)
Normalisation factor K : (k, up)

* Determine an estimateof R=2, /7,

1) Based on input quantities (y,, uy1)' (Y, uyz) and (k, u,)

r:ﬁ:& u72,_u§,1 u?’z
Ky,  y2 rz2  yZ | y2

2) Based oninput quantities (zy, u, ), (z,, u,,) with z, = ky, and z, = ky, (suppose independent)

Zq 2 2 2 2 2
r = — u%‘ _ uZl _I_ uZZ - qu _|_ uYZ _I_ 2 %
7 2 2 2 .2 2 2

2 r Z3 Z5 Vi %) k

Contribution due to common uncertainty component is not correct
Overestimation of the uncertainty due to common component
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Linear function of variables (normal PDF)

z : linear function of random variables x;,_, _ with (4 =1,..,mV-)

LEXY)

i ” of
z="1(x;; i=1,...,n) Z:Zci X; C,=—o
i=1 OXi
- H;
Mean Variance
n n
°* |ndependent variables: u, =Zci K 2 =Zci2 o}
i=1 i=1

European
Commission




Linear function of variables (normal PDF)

z : linear function of random variables x,_;  with (4 =1,..,n;V-)

-----

z="f(x;; i=1,...,n) Z—icx C—a]c
o — L ox,
Hi
Mean Variance
n
* Independent variables : uz=zci M ZC of
i=1

n

2 _
* Dependentvariables: U, =ZC1 M 2 _ZC of + ZZ Ci Cj Vij

i=1 i# J
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GLUP : matrix notation, z scalar (1 dim.)

Linear Non - linear
z=Cx 2~ f(u,) +G: (x -, )
C:dim (1xn) Gy: gradient matrix of f
Jacobian matrix
o of o — of
K an k an
» Mean t, =C py b, = fp,)
T
 Covariance matrix V,=CV- c' V, ® G; V;( G;
X

=> basis of General Law of Uncertainty Propagation (GLUP)
(sandwich formula, V, =G V, G')
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Example: (y,, y,, b) = (z,=y,-b, z,=y,-b) =z
1) Experiment

Independent observables (y,,y,) of Y : (y,, uyl) and (y,, uyl)

Background estimate : (b, up)

Report estimates of Z=Y-B : (z4,z,) and Vi o,
2) Evaluator determines best estimate of Z

Input observables : (z4,z,) and Vi,

Result : (2, u,)
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GLUP : (y1/y2/b) — (21= Y1 - b/ Z,=Y;, - b)

z=0CXx V=G Vi G!
1) Vvl,vz,b : experimental input quantities,
determined by experimental conditions

independent observables
— unhcorrelated uncertainties

2) Matrix G : determined by model Z=Y - B

model : z, =y, -bandz,=y,-b

GV

3) v Y1,.Y2,

= GT
21,22 b

Z = (21;22)

5 _
uy, 0 0
2
yiyab=| 0 uy, O
0 0 u
i 521 521 621 |
5y1 8y2 ok |:
0z 622 822
| Oy1 Oyp Ok

)_(\ = (ylryzr b)

1 0 -1
o1 -1

|
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GLUP : (y,,y,,b) = (z,=y,-b,z,=y,-b)

1) Vvl,vz,b : experimental input quantities,

Independent observables, uncorrelated uncertainties

2) Matrix G : determined by model Z=Y - B
Model:z,=y,—b and z,=vy,-b

— T
3)V, .. =GV, , G

1 0 -1 , 1 0 -1
vV, = 0 u oo 1= 0
a2 g 1 -1 2o 01 -1

uy, 0 0

_ 2
VY1,V2'b =1 0 Uy2 0
0 0 uf

0
2 2 2
5 B Uy1 +Up Up
u 2 2 2
Y2 b Uy2 +Up
_Utz)
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GLUP : (y1/y2/b) — (21= Y1 - b/ Z,=Y;, - b)

2
)V, imental input titi o 20
y1yo,b - EXPErimental input quantities, v, =l 0 ”3/ 0
1,Y2» 2
. 2
Independent observables, uncorrelated uncertainties i 0 0 Up |
2) Matrix G : determined by model Z=Y - B
{1 0 —1}
G=
Model :z,=y,—b and z,=vy,-b 01 -1
- T
3) V21,22 - G Vy11y21b G
24Ul u2 The covariance matrix contains a non-zero non-diagonal element,
. Y1 b b
Vzl,zz - . 2+l which reflects the contribution of a common uncertainty component
b Y b
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GLUP : (y,,y,,b) = (z,=y,;-b,z,=y,-b) = z=(z2,+2,)/2

Step (1) : Determine (z,,z,) = (y; — b, y, — b) and covariance matrix V

2 2 2
( ) ( o b) Y B Uy1 +Ub Up
Z7,25)=(y1 —b,y, — =
1,22)=1Y1 Y2 2,25 u% u%/ +u§
2

21,22

Step (2) : Determine z = (z,+2,)/2 and covariance matrix V,

1 1
=177 V,=GV, , G G:[— —}
p) 172 2 2
2 2 2 _1_ 2 2
V. = l l uV1+uB Ub 2 _uyl qu +u2
z ~ 2 2 2 11| b
2 2 Up, uy +up | = 4
2
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GLUP : (y,,¥,,b) = (z,=y,-b,z,=y,-b) = z2=(z,+2,)/2

Experimental data (y,,y,) and b : independent

(1) Based on reporting full experimental details (yl,uyl), (yz,uyz) and (b,u,)

2, 2
+ u, +U
,=Y17Yo ug_ Yi V) +u%
2 4
(2) Based on reporting of (z,, z,) and VZl 2
21 +z2 uZ +u
z="1""2 Full covariance ui="1 Y242
2 4
2 2 2
) u, +u u
Only diagonal terms ui=r V2 7B
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Exercise
* Experiment: Independent observables (y,, uyl), \7¢ uyl) and (b, u,)
* Model: (y;, v, b) > (z,,2,) = (y; - b, y, - b) = (v,,v,) = (2,42, 2;-2,) = (v +v,) = 22,

: o2 — An2 = 2 | 2
- Full covariance D U3, = 4us, =4 (uy, +up)

- Only diagonal terms :  u3, = 2uZ +2uZ =2uj +2ui +4uj
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GLUP : (y,, ..., Y, b)=>Z=Y-B

(y]_luyl) ) (y2/uy2 ) ) (yn/uyn) and (b/ub) _) (leuzl)/ (leuzz)/ Y (Zn/uzn) _) (Zluz)

(Y1,Yy - Y D) s independent z=y.-b
m
=D y;-b
Z = — J—
(24,2,5,..-,2,) +V5 p— " Y
=1
2 2 2 2 T 1 m
uy, +Up Uy up ul = ZUZ .y
Z 2 yJ b
m i=1
utz, “3/2 +u% u%
V- =
YA
Utz) U% S U\Z/n +ut2,
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GLUP : (yy,.... Vo, k) = Z=KY

(y]_luyl) ) (y2/uy2)/ ey (yn/uyn) and (k/uk) _) (leuzl)/ (leuzz)/ Y (Zn/uzn) _) (Zluz)

(Y1,Y2,-¥YnK) : independent z,=ky,
m
593
Z = e .
(21,2,,..,2,) +V3 — m Y]
=1 _
i 1 2 m Vi
KPuy, +ViUk  V1vaUy S AT , k > 0 E j
u, = ij‘l‘y Ui y:T
YV2¥1uk Cug, +ygug - Y2l Mg
V. m
: 2%
2 e Yi 9
' kzuxzfn_l Yn-1¥nU U _ 1 j=1 n Uk
2 2 2 k2
_ynyluﬁ Vnyzuﬁ T ynyn_luﬁ k2u$n+yﬁu§_ z m Y
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Error and uncertainty (JCGM 100:2008 section 3.2)

e

* Measurement error : difference between two values

“result of a measurement minus a true value of the measurand ”

can be + or -

* Measurement uncertainty : dispersion of a distribution — error # uncertainty

“non-negative parameter characterizing the dispersion
of the values being attributed to the measurand”

always >0

determined by the width of the PD of the error component(s)
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Measurement error and uncertainty

P(z)

Z .

0.10

result of a measurement to estimate the value of quantity Z

0.06}

0.04}

0.02f

0.00

| Reference

0.08}

value

Error

Measurement
results

0

M 2IO M

40

60

z / unit

80 100 120

* Measurement error

Difference between values
+ or -

* Uncertainty

Derived from the standard deviation
(width) of a distribution
>0

European
Commission




Measurement error
e Systematic error (bias)

“Mean that would result from an infinite number of measurements of the
same measurand carried out under repeatability conditions minus a true
value of the measurand.”

e Random error

“Result of a measurement minus the mean that would result from an infinite
number of measurements of the same measurand carried out under
repeatability conditions.”
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Random and systematic error

z. : result of a single measurement to estimate the value of quantity Z

j
Zi:!vl"'Bs"'gr,i

0.10
| True value
L . . . _
0.08} Systematic Systematic error : 3,
i error B
<€ ' — Z _
0.06} i > H
D | :
o
0.04}
* Random error: g
0.02 Random g .=2-12
error ’
000 =020 60 80 " 100 120
Z/Unit sssssssssssssnnnnnnns .
. m :
1 E
Z=— ) 7 :
m :
........... Thd

European
Commission




(Y - ¥,y b) = estimateof Z=Y - B

Z : measurand, i.e. quantity of interest, with true value n
Y : result of a single experiment to estimate true value of Z

all measurements in same conditions (e.g. measurement time,...)

b . correction for background,z=y-b
0.10 m 1 &
Sy.
| True value 1 Z Vi g2 — _z(y _ y)z
y==—7%; Uy = —/— Yi — J
008}  H m L") Y ym I
0.06}
N |
(Al
0.04}
0.02}
000——=6"20 0 80 100 120

z / unit
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(Y - ¥,y b) = estimateof Z=Y - B

Z : measurand, i.e. quantity of interest, with true value n
Y : result of a single experiment to estimate true value of Z
all measurements in same conditions (e.g. measurement time,...)
b : correction for background,z=y-b
0.10 m o
S 1
| True value 1 Z Vi g2 — _z(y _ y)z
y=— )y u, = — Vi _ j
008}  H m L") Y ym I
0.8} A\
N | :
(Al
0.04}
0.02}
0'000 20 40 60 80 100 120 = Not correcting for the background results in a systematic error b

z / unit
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\r Y b) = estimateof Z=Y-B

: measurand, i.e. quantity of interest, with true value n

: result of a single experiment to estimate true value of Z

all measurements in same conditions (e.g. measurement time,...)

: correction for background,z=y-b

Z
Yi
b
0.10
| True value
0.08} n
0.06} \
O | :
(a1
0.04}
0.02}
000 =026~ 80 80 100 120
z / unit

S

1 m
y HJ;E;SG y Jm

Y

g2
z=y-b u, = |[—

Yj
m

2
+ U

1 m
2 _ 2
Sy = 7 E i =)
i=1

= Not correcting for the background results in a systematic error b

—> Additional uncertainty u, due to a systematic effect (background)
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Measurement precision and accuracy

* Measurement precision

“Closeness of agreement between indications or measured quantity values
obtained by replicate measurements on the same or similar objects under
specified conditions”

* Measurement accuracy

“Closeness of agreement between a measured quantity value and a true
quantity value of a measurand”
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Precision << Accuracy

Accurate Inaccurate
(due to a systematic error or bias)

Precise

Imprecise
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Probability distribution and statistical theory (2 dim.)

P(x,y) theoretical probability density function of (x,y)

— Mean uX:-”x P(x,y) dxdy MYZJ.J‘VP(X'V)dXdy
2 _ ([ix— )2 dxd oo = | [(v—u,)* P(x,y) dxdy
— Variance ox ”(X Hx )" Plxy) dxdy ' ” '
— Covariance matrix ) ) va <(X Hly — “v)>
Ox  Ox,y
Vey= | > 5 f )y - uy)P(x y) dxdy
Ox,y Oy
2
— Correlation matrix o
o = 1 plxy) plx,y) =—2
X, x Oy
Y olpky) 1
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Example: (y,, ¥,, b) = (z,=Yy,-b, z,=vy, - b)

* Experiment

Independent observables (y,,y,) of Y S\ uyl) and (y,, uyl)
Background estimate : (b, uy) - , _
. U, +Up Up
Report estimates of Z=Y-B (2 z5)andV, V _| Y1
£1/22 u% uf/z + u%

* Covariance matrix V,, , of (z;,z,) consists of

- Uncorrelated components (u uyz) : contribute only to diagonal elements

y1’

— Correlated component u, : contributes also to off-diagonal elements

—> Systematic effect (background) contributes to non-diagonal terms

Note: correlated uncertainty component u, can be due to counting statistics!
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Example: (y,,y,,b) = (z,=y,-b, z,=y, - b)

2 2 2
— _ u + U u
21,22 2 2 2
Z,=Y,—b B Uy, THb

1 :

{ 1 p(x,y)} plx,y) =2

b :>z{and z;

pX,y = Uy Uy
' = zyand z,\ pixy) 1 u2
p(erZZ) —
u,=0 =plz,2,)=0 \/(u§,1+ ug)(uZ + ug)

Note: correlation is due to the uncertainty on b
It is different from a correlation due to physics phenomena, e.g.
— linear correlation between position FE peak and y-ray energy in a Ge-detector

— correlation between altitude and atmospheric pressure
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Example: (y,,y,,b) = (z,=y,-b, z,=y, - b)

2 uy, ) = (100, 1)

,_[ro1 oo1
(v uy)) = (98,2) I (zy,2,) = (90, 88) 21,2, 0.01 4.01
l(b,u,) = (10.0,0.1)|

1  0.005
P21 Tl 0.005 1

It is different from a correlation due to physics phenomena

Note: correlation is due to the uncertainty on b
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Example: (y,,y,,b) = (z,=y,-b, z,=y, - b)

(yll uyl = (1001 1)

2 1
(y2; uyz = (98/ 2) r (211 Zz) = (901 88) VZ1'22 :|:1 5:|
l(b,u,) = (10.0, 1.0)|

!

1 032
Paiz, 032 1

It is different from a correlation due to physics phenomena

Note: correlation is due to the uncertainty on b
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Example: (y,,y,,b) = (z,=y,-b, z,=y, - b)

2 uy, ) = (100, 1)

26 25
(yz, uy2 = (98, 2) = (Zl, 22) = (90, 88) Vzl,zz :{25 29:|
l(b,u,) = (10.0,5.0)|

Note: correlation is due to the uncertainty on b

It is different from a correlation due to physics phenomena
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Final result of a measurement

Input quantities =P Qutput quantity (measurand)

(X1, X5, X3, -.) Model Z
/X\—>
/\ —{ Model __yj\
S
* Input quantities (xy, ..., X,) with V, — (z, V)
Pz of
* Model z = f(xy, ...,x,) V.=GV, GT ‘ Sk = )

How to estimate input covariance V,?
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Determination of input covariance matrix V,

* Define measurement model: z = f(x,,...,x,) V.=GV GT
Y4 X

— lIdentify basic metrological parameters of the measurement process
— Define a model f that starts from independent input quantities

e Example: Z = K (Y-B), e.g. Aqg =K (C-B) Aa=ﬁ(c-3)

1) define independent input quantities

— Experimental observable (v, u, - 5 :
(sample measurement) uy 0 0
— 2
— Background (b, u,) V(y,b,k) =10 uy O
(independent background measurement) 2
] 0 0 uk_

— Normalisation (k, uy)

(independent measurement with reference sample)

2) estimate uncertainties of independent input quantities

(see additional slides to estimate uncertainty due to systematic effects for a-activity measuwnts)
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Example: a-activity experiment
Determination of activity A, based on a-counting
Measurand : A (alfa- activity of the sample)

Measurement model 1C, =€, Q2P A,

A,=c,/(e,QP,)

e Results of counting experiment: ¢, =c-b

sample count rate . C
background count rate . b

E
'
'
[
'
'
[
'
'
)
'

e Other input quantities
POL
Q) :solid angle depends on (H, ¢, 9, )

. escape probability

e, . detection efficiency

European
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Example: a-activity experiment

* Evaluate the impact of influencing components

— Target — detector geometry (distance target-detector, target position, collimation)
— High Voltage

— Long term stability of detector/electronics chain

* Perform a set of replicate measurements under the “same” conditions

Experiment 1
(1) position sample, produce vacuum, high voltage on, determine distance

(2) replicate measurements

(3) high voltage off, brake vacuum, take sample out

Experiment 2
Repeat (1), (2), (3)

Experiment k
Repeat (1), (2), (3)

 Statistical analysis: ANalysis Of VAriance (ANOVA)

European
Commission




Results: a-activity measurements

number of groups k=7
number of measurements in each group rn=n;=24
total number of measurements :N =168
j=1 2 3 4 5 6 7/

1 29691 29413 29570 29770 29717 29873 29695
2 29728 29474 29885 29871 30059 29926 29671

24 29775 29802 29723 29797 29685 29386 30007

X; = 29693.21 29769.17 29719.79 29784.00 29730.33 29666.13 29087.46
Srj = 24674.08 28609.10 32532.70 32102.61 23401.71 39917.33 22539.56

n]' nj

1
X;j = ;z Xi Stj = E(Xij Rk

Ji=1 i=1
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ANOVA table

Sum of squares Y2 v w2V
Expectation value
k
2 — 2“' (x; — x)? = 371330 6 uz+nu}  =61888.3
g N
k n ,
_ Z Z(Xij —x)? = 4686873 167 u? =29111.0
j=1i=1

=

j

k k
1
= Y y=py Y%y x=29738.58 = Uy =37 (0.12 %)

j=1 j=1 ]1:1

7rlr--k
7TIP4
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RN
o
)

Example: Y, for ®7Au(n,y)

—
<

Counts / (1/ns)

—
=

—
.2
OQ) T T TTTT

:gfa’\llabgr —~ 1015_
2 ]
& a0
Cw— By g 10 M
—|Y.orn = N & | m
exp Co— Bo ¢ - i
10'1:'
; 10° 10* 10° 10°
Ll PR | IR T 10 ——Yield
TOF / ns 10°
ke
]
> 10?2
10°
10"
10°
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Normalisation at saturated resonance profile

- =
Y, = — 7 (1-e "Otot) 4 .
Otot

l N, >>1and o, = Gy,

Cw_ Bw
Co~ B

Yield

Y.=1 Yexp = N

¢

0.1¢

Cqy— B
—> N= "¢ 1
Cw—Bw Y(

0.01

2 3 4 5 6 7 8
Neutron Energy / eV
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Normalisation at saturated resonance profile

1.0F

- =
~ ' (1 "Otot) 4
Otot

Yy

09}

0.8+ l NGt >>1 and Gy ~ Otot

~ 1 — N tw-B
0.7 Yy Yexp = N Co- B 1@
N [ /eV T eV
—— 10000 15 125 _Cp— Bp 1 N is independent of :
—— 10002 12 155 —> N= .
—— 10020 18 100 Cw—Bw Yo - sample thickness
001~ 3 4 5 6 7 8 - nuclear data

Neutron Energy / eV Requires special procedures (weighting function)
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Normalisation uncertainty: experimental evaluation

* Perform dedicated experiments to uncertainty due sample properties
(systematic effect: 3)

— experiments using samples with different characteristics

— experiments with similar contribution of random error component (counting statistics) : €

e Statistical analysis of the data: uy = ué +uf3 = ug < 0.003

Sample  Diameter Thickness N
Au 80 mm 0.05 mm 1.002 (2)
Au 80 mm 0.11 mm 1.001 (2)
Au 80 mm 1.02 mm 0.997 (2)

Mean 1.000

Std 0.003

Sample  Diameter Thickness N
Ag 60 mm 0.08 mm 1.005 (4)
Ag 60 mm 0.18 mm 0.993 (4)
nAtphAg 60 mm 1.07 mm 0.999 (4)
206pphAg 60 mm 1.15 mm 1.003 (4)

Mean 1.000

Std. 0.005
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Resonance parameters from capture experiments

* Perform dedicated experiments applying different conditions: >°Fe(n,y)

(systematic effect: 3)

— experiments using normalisation samples with different characteristics (sample, y-ray emission)

— capture measurements with different iron samples to determine I', for the 1.15 keV resoance

— experiments with similar contribution of random error component (counting statistics) : €

* Analysis of the data: determine normalisation N (previous slides) and I',

Sample N g/cm? %) I'n/ meV
Fe X mm
Fel Ag 0.105 60 62.6 (7)
Fe2 Ag 0.394 60 62.5 (7)
Fe3 Ag 0.905 60 60.2 (7)
206pphFe* Ag 0.394 1.213 60 63.1 (7)
PbFe* Ag 0.422 1.103 60 62.6 (7)
PbFe* Ag 0.422 2.725 60 62.6 (7)
Fe4 Au 0.202 80 61.2 (7)
Fe5 Au 0.795 80 60.3 (7)
Fe6 Au 0.998 80 61.2 (7)
AuFe Au 1.708 0.118 80 61.3 (7)
Fe.03 Au 1.404 0.603 80 59.1 (7)
61.5
1.3
2.1

0.15

* Y
exp
REFIT

0.10f

Yield

0.05f

0040 1150 1160
Neutron Energy / eV
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Resonance parameters from capture experiments

* Perform dedicated experiments applying different conditions
(systematic effect: 3)

e Statistical analysis of results

— experiments using normalisation samples with different characteristics (sample, y-ray emission)

— capture measurements with iron samples to determine I'_ for the 1.15 keV resoance

— experiments with similar contribution of random error component (counting statistics) : €

Sample

N

g/cm?

Fe

X

9]
mm

T'n/ meV

Fel
Fe2
Fe3

206ppFe

PbFe*
PbFe*
Fe4
Fe5
Fe6b
AuFe
Fe,03

Ag
Ag
Ag
Ag
Ag
Ag
Au
Au
Au
Au
Au

0.105
0.394
0.905
0.394
0.422
0.422
0.202
0.795
0.998
1.708
1.404

1.213
1.103
2.725

0.118
0.603

60
60
60
60
60
60
80
80
80
80
80

62.6 (7)
62.5 (7)
60.2 (7)
63.1 (7)
62.6 (7)
62.6 (7)
61.2 (7)
60.3 (7)
61.2 (7)
613 (7)
59.1 (7)

Mean
Std
Std (%)

61.5
13
2.1

Reference value (transmission): I", =61.7 (9) meV

* Difference with reference value is smaller than uncertainty of reference value

* Uncertainty due to systematic effects (normalisation, sample characteristics)

u%n = u +uf3 ug
= uy=1.1meV= ~0.018

u, = 0.7 meV '
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Evaluation of uncertainty: Type A and Type B

Purpose of Type A and Type B classification is to indicate two different ways of evaluating uncertainty
components and is for convenience only; the classification is not meant to indicate that there is any
difference in the nature of the components resulting from the two types of evaluation.

* Type A
“Statistical analysis of measured quantity values obtained under defined conditions”

“A Type A standard uncertainty is obtained from a probability density function derived from an observed
frequency distribution”

* Type B
“Evaluation of a component of measurement uncertainty by means other than Type A evaluation”

“A type B standard uncertainty is obtained from an assumed probability density function based on the degree

of belief that an event will occur “
The uncertainty is evaluated by scientific judgement based on available information, e.g.:

— previous measurement data
— data provided in calibration and other certificates

— uncertainties assigned to reference data taken from handbooks
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Evaluation and propagation of measurement uncertainty

* Define measurement model: z = f(x,,...,x,)

V=GV, G|
— Identify basic metrological parameters of the measurement process
— Define a model f that starts from independent input quantities
* Example: Z =K (Y-B), e.g. Agq =K (C-B) Ag =—55—(C-B)
e, P,
1) define independent input quantities
— Experimental observable (y, u,) ) )
(sample measurement) u}z, 0
— Background (b, up) Viybk) = | O u% 0
(independent background measurement) Y 2
0 0 uk

— Normalisation (k, uy) : i
(independent measurement with reference sample)

2) estimate uncertainties of independent input quantities
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Summary

e Statistical analysis:
— is more than just analysing the result of repeated measurements
- is a powerful tool to reliably estimate and propagate measurement uncertainties

e All uncertainties are “statistical”

— uncertainties reflect the width of a statistical distribution
(uncertainties can be due to counting statistics)

— uncertainties should be evaluated (estimated) by a statistical analysis

— such an evaluation requires dedicated experiments

* We differentiate between
- Random and systematic error and their uncertainties
= Uncertainties due to systematic and random effects

— Uncorrelated <> correlated uncertainty components

Note: - systematic effects introduce a correlated uncertainty component
- uncertainties due to counting statistics can contribute to a correlated uncertainty component
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Keep in touch

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub — Joint Research Centre
EU Science, Research and Innovation
EU Science Hub

EU science
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Thank you
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