Testing the cosmological model with the large-scale structure

Benjamin L'Huillier (Sejong University) 루일리예, 벤자민 CIEMAT 2022-01-13

Astronomy & Cosmology in Korea (a totally biased picture!)

KASI & KIAS cosmology groups: Members of DESI

Astronomy & Cosmology in Korea (a totally biased picture!)

Astronomy & Cosmology in Korea (a totally biased picture!)

IAUGA 2022 Registration Program Abstract Hotel & Tour Sponsorship & Exhibition General Information **HOME** Contact

IAUGA 2022 | XXXIst General Assembly
International Astronomical Union

August 2-11, 2022 | BEXCO, Busan, Republic of Korea & Online Platform

The Concordance Model

The concordance model of cosmology: the FLRW metric

 \bullet Isotropy & Homogeneity \rightarrow FLRW metric

$$
\mathrm{d} s^2 = g_{\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu = c^2 \mathrm{d} t^2 - \boxed{a^2(t)} \bigg(\frac{\mathrm{d} r^2}{1 + k r^2} + r^2 \mathrm{d} \Omega^2 \bigg)
$$

Cosmology = study of a(t)

The concordance model of cosmology: Gravity

• Gravity: General Relativity

\n- Einstein Equations:
$$
R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
$$
\n(Geometry of the Λ and Λ).

\n(Geometry of the Λ and Λ).

\n(1.41)

\n(1.42)

\n(1.43)

\n(2.44)

\n(2.45)

\n(3.44)

\n(4.44)

\n(4.44

• Solve for the FLRW metric: obtain the Friedmann Equations

$$
\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\textcolor{blue}{\cancel{O}}\textcolor{red}{-\frac{k\dot{d}^2}{a^2}}\textcolor{red}{+\frac{\Lambda c^2}{3}}\textcolor{red}{\frac{\ddot{a}}{a}} = -\frac{4\pi G}{3}\textcolor{red}{\cancel{ \left(\rho + \frac{3p}{c^2}\right)}}\textcolor{red}{+\frac{\Lambda c^2}{3}}.
$$

Matter: density ρ , pressure p

Curvature k

Cosmological constant A

The concordance model of cosmology: Inflation

- Why does the Universe seem so flat?
- How is the CMB so homogeneous?
- Inflation: rapid expansion in the early universe
	- Primordial fuctuations
	- Stretches any curvature
	- Increases the horizon
	- Seed for structure formations

Is Inflation Gaussian? Is it scale-invariant?

The concordance model of cosmology

Isotropy & Homogeneity **Py & Homogeneity A theory of gravity
FLRW metric and Congrat relativity**

General relativity

Initial conditions Inflation

● Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But… tensions

Advanced Statistical Methods

Model-dependent Methods

- Widely used; more straightforward (model-fitting), "easier"
- More constraining power O
- Bias towards the (assumed) model

MCMC, Nested sampling

Both approaches can and should be used together

The Linear Regime

The concordance model of cosmology

Isotropy & Homogeneity **Py & Homogeneity A theory of gravity
FLRW metric and Congrat relativity**

General relativity

Initial conditions Inflation

● Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But… tensions

ordinary matter **5%** dark matte 26% Image Credit: Science/AAAS dark energy 69%

Background Expansion: Observables

$$
\mu(z)=5\log_{10}d_{\rm L}(z)+cst
$$

Type Ia Supernovae (SNIa): standard candles Baryon acoustic oscillations (BAO): standard ruler

Known luminosity \rightarrow Luminosity Distance Known size \rightarrow Angular Diameter Distance, Hubble Parameter $d^{\,}_{\mathsf{A}}(z)/\mathsf{r}_{\mathsf{d}}^{\,},\mathsf{H}(z)\,\mathsf{r}_{\mathsf{d}}^{\,}$

$$
r_{\rm d} = \frac{c}{H_0\sqrt{3}} \int_0^{1/(1+z_{\rm d})} \frac{\mathrm{d}a}{a^2 h(a)\sqrt{1 + \frac{3\Omega_{\rm b}}{4\Omega_{\rm r}}} a}
$$

BL & Shafieloo (2017) Shafieloo, BL, Starobinsky (2018)

Model-independent Measurement of H_0r_d

Consistent with Planck 2015: $H_0r_d = (9944.0 + 127.4)$ km s⁻¹

BL & Shafieloo (2017) Shafieloo, BL, Starobinsky (2018)

Model-independent test of FLRW metric & curvature

Clarkson et al. (2008):

$$
\mathcal{D}(z) = \frac{1}{\sqrt{-\Omega_k}} \sin\left(\sqrt{-\Omega_k} \int_0^z \frac{dx}{h(x)}\right)
$$

$$
\mathcal{O}_k(z) = \frac{(h(z)\mathcal{D}'(z)^2 - 1)}{\mathcal{D}^2(z)} = \frac{\left(\frac{H(z)\mathcal{D}'(z)}{H_0}\right)^2 - 1}{\mathcal{D}^2(z)} \stackrel{\text{FLRW}}{=} \Omega_k
$$

 \sim 7 \mathbf{r} λ

Shafieloo & Clarkson (2010)

Model-independent test of FLRW metric & curvature

New formulation:

$$
\Theta(z) = h(z)\mathcal{D}'(z) = \frac{(1+z)}{c}H(z)r_d\frac{d_A(z)}{r_d}\frac{\mathcal{D}'(z)}{\mathcal{D}(z)} = F_{AP}(z)\frac{\mathcal{D}'(z)}{\mathcal{D}(z)} \stackrel{\text{flat-ELRW}}{=} 1
$$

$$
\mathcal{O}_k(z) = \frac{\Theta^2(z) - 1}{\mathcal{D}^2(z)} \stackrel{\text{FLRW}}{=} \Omega_k
$$

$$
\Phi^{0.8}
$$

with flat FLRW
cy BAO \leftrightarrow SNIa
viations at high-z?

$$
\Phi^{0.4}
$$

$$
\Phi^{0.5}
$$

$$
\Phi^{0.6}
$$

 $$

 \boldsymbol{z}

Contract Contract Contr

 ω

Consistent

Consistenc

Hints of dev

BL & Shafieloo (2017) Shafieloo, BL, Starobinsky (2018)

High-z SNIa: cosmology or systematics?

Possible deviation from LCDM at high-z Difficult to reproduce by dark energy models

BL, Shafieloo, Linder, Kim (2019)

The concordance model of cosmology

Isotropy & Homogeneity **Py & Homogeneity A theory of gravity
FLRW metric and Conoral relativity**

General relativity

Initial conditions Inflation

● Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But… tensions

The large scale structure hold valuable information

Redshift-space Distortion

Growth rate:

 $f = \frac{\mathrm{d} \ln D}{\mathrm{d} \ln a} \simeq \Omega_m^{\gamma}$

Linear growth of perturbations:

eBOSS final results (2007.08991)

Reconstructing Expansion from Growth

$$
f\sigma_8 = \sigma_{8,0}\Omega_{\rm m}^{\gamma} \exp\left(-\int_a^1 \Omega_{\rm m}^{\gamma} d\ln a\right) \quad \frac{\text{BL et al. (2018)}}{\text{Shafieloo, BL & Starobinsky (2018)}}
$$
\nEXPANSION

\nGROWTH

Starobinsky (1998) exact formula (in GR):

$$
h^{2}(z) = \left(\frac{1+z}{\delta'(z)}\right)^{2} \left(\delta_{0}^{\prime 2} - 3\Omega_{\text{m0}} \int_{0}^{z} \delta(u)|\delta'(u)|\frac{\mathrm{d}u}{1+u}\right)
$$

"Only" dependent on

$$
(\Omega_{\text{m0}}, \sigma_{8,0}, \delta(z))
$$
"Independent of Dark Energy!

Reconstructing Expansion from Growth

Reconstructing Expansion from Growth: Crossing statistics

Crossing statistics (Shafieloo 2011,2012): "How consistent is the considered model with the data?"

 \rightarrow Mean function ("what we want to test"): best-fit LCDM

Multiply by hyperfunction (Chebyshev polynomials with coeffs. C_i)

What is the posterior distribution of C_i ? Deviation from the mean function?

Deformations of the mean function (best-fit, red)

Reconstructing Expansion from Growth: Crossing statistics

Posterior distribution of C_i :

Consistent with $C_0 = 1$, $C_i = 0$:

→ The data does not require deviation from Λ CDM+GR

Reconstructing Expansion from Growth: Gaussian Process

Observations y_i reconstruct f(z)?

Ansatz: (y_¡, f(z_¡)) are jointly Gaussian, with an input-covariance

The hyper-parameters of the GP are trained on the data

Reconstructing Expansion from Growth: Gaussian Process

Consistent with GR+LCDM

DE energy density is not guaranteed to be positive! $\Omega_{\rm DE}(z)=1-\frac{\Omega_{\rm m0}(1+z)^3}{h^2(z)}$ $h^2(z)$

- Case A: $\Omega_{DE}(z < 2) > 0$
- Case B: $\Omega_{DE}(z < 1) > 0$
- Case C: $\Omega_{DE}(z < 0.7) > 0$

- Case A: $\Omega_{DE}(z < 2) > 0$
- Case B: $\Omega_{DE}(z < 1) > 0$
- Case C: $\Omega_{DE}(z < 0.7) > 0$

BL, Shafieloo, Polarski, Starobinsky (2020)

High $\Omega_{m,0}$ and low $\sigma_{8,0}$ allowed by the data

Negative DE Energy Density?

Interesting transient acceleration in the past Toy model: Negative cosmological constant Two DE components X and λ: Constant λ<0 X: Phantom behaviour: $w_x(0.1 < z < 1) < -1$

Not excluded by the data

LCDM)

Calderón, Gannouji, BL, Polarski (2021)

The non-linear Regime: N-body Simulations

Parametrizing Nonlinear DE Perturbations

$$
\nabla^2\Phi=\overbrace{3\mathcal{H}\Phi'+3\mathcal{H}^2\Psi+\frac{1}{2}\delta^{ij}\Phi_{,i}\Phi_{,j}}^{}+4\pi G_Na^2(1-\overbrace{2\Phi})\sum_X\bar{\rho}_X\delta_X\,,
$$

- Relativistic N-body code k-evolution (Hassani et al)
	- Effects of non-linearity
	- \circ Non-A Dark Energy (k-essence) Deviation from GR ($\mu \equiv 1$)

Hassani, BL+(2020)

The concordance model of cosmology

dark energy 69%

26%

Planck 2018 constraints: power law

Primordial Power Spectrum

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Reference model: Planck 2015 TTTEEE (P15)

Wiggly-whipped inflation (Hazra et al. 2014ab, 2016): WWIA, WWID, WWI'

Planck 2015 TTTEEE+HFI (P15+HFI)

Matter Power Spectrum

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Initial conditions: features visible

Features disappear in the non-linear regime

WWID, P15+HFI can be distinguished till z=0

WWIA, WWI' cannot be distinguished

Power spectrum may not be sufficient

Count-in-cell: Matter density

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Can distinguish between models!

From 1D P(k) to 3D count-in-cell

Non-linear regime: P(k) does not capture all the information

Count-in-cell: Haloes

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Still holds!

But by z=0, difficult to distinguish

- Current data are consistent with Flat FLRW, Λ as dark energy, GR as gravity, but room for deviation
- Modeling the non-linear regime with N-body simulations beyond ΛCDM
	- Relativistic simulations of DE: quantifying and parametrizing the deviation from ΛCDM
	- LSS can help constraining the early Universe: 3 dimensional info
- Future surveys (DESI) will help
- *iGracias!* -
- 감 사 합 니 다 -