Testing the cosmological model with the large-scale structure

Benjamin L'Huillier (Sejong University) 루일리예, 벤자민 CIEMAT 2022-01-13

Astronomy & Cosmology in Korea (a totally biased picture!)

KASI & KIAS cosmology groups: Members of DESI

Astronomy & Cosmology in Korea (a totally biased picture!)

Astronomy & Cosmology in Korea (a totally biased picture!)

HOME IAUGA 2022 Registration Program Abstract Hotel & Tour Sponsorship & Exhibition General Information Contact

IAUGA 2022 XXXIst General Assembly International Astronomical Union

August 2-11, 2022 | BEXCO, Busan, Republic of Korea & Online Platform

The Concordance Model

The concordance model of cosmology: the FLRW metric

• Isotropy & Homogeneity \rightarrow FLRW metric

$$\mathrm{d}s^2 = g_{\mu
u}\mathrm{d}x^\mu\mathrm{d}x^
u = c^2\mathrm{d}t^2 - \overbrace{a^2(t)}^2 igg(rac{\mathrm{d}r^2}{1-kr^2} + r^2\mathrm{d}\Omega^2 igg)$$

Scale Factor *a*

Cosmology = study of a(t)

The concordance model of cosmology: Gravity

• **Gravity:** General Relativity

• Einstein Equations:
$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

(Geometry) (Cosmological constant) (Energy)

• Solve for the FLRW metric: obtain the **Friedmann Equations**

$$egin{split} \left(rac{\dot{a}}{a}
ight)^2 &= H^2 = rac{8\pi G}{3}
ho - rac{k d^2}{a^2} + rac{\Lambda c^2}{3}\ rac{\ddot{a}}{a} &= -rac{4\pi G}{3} \left(
ho + rac{3p}{c^2}
ight) + rac{\Lambda c^2}{3}. \end{split}$$

Matter: density ρ , pressure p

Curvature *k*

Cosmological constant A

The concordance model of cosmology: Inflation

- Why does the Universe seem so flat?
- How is the CMB so homogeneous?
- Inflation: rapid expansion in the early universe
 - Primordial fuctuations
 - Stretches any curvature
 - Increases the horizon
 - Seed for structure formations

Is Inflation Gaussian? Is it scale-invariant?

The concordance model of cosmology

Isotropy & Homogeneity FLRW metric

A theory of gravity General relativity Initial conditions Inflation

• Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But... tensions

The large scale structure hold valuable information

Advanced Statistical Methods

MODEL-DEPENDENT METHODS

- Widely used; more straightforward (model-fitting), "easier"
- More constraining power
- **G** Bias towards the (assumed) model

MCMC, Nested sampling

MODEL-INDEPENDENT METHODS

- Less straightforward; overfitting problem
- Less constraining power
- O More flexibility
- No bias towards any model
- Can detect unexpected features in the data

Gaussian process, iterative smoothing,

Crossing statistics, ...

Both approaches can and should be used together

15.

The Linear Regime

The concordance model of cosmology

Isotropy & Homogeneity FLRW metric

A theory of gravity General relativity Initial conditions Inflation

• Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But... tensions

The large scale structure hold valuable information

Background Expansion: Observables

Type Ia Supernovae (SNIa): standard candles

 $\mu(z)=5\log_{10}d_{
m L}(z)+cst$

Baryon acoustic oscillations (BAO): standard ruler

Known size \rightarrow Angular Diameter Distance, Hubble Parameter $d_A(z)/r_d$, $H(z) r_d$

$$r_{
m d} = rac{c}{H_0 \sqrt{3}} \int_0^{1/(1+z_{
m d})} rac{{
m d}a}{a^2 h(a) \sqrt{1+rac{3\Omega_{
m b}}{4\Omega_{
m r}} a}}$$

$$Om(z) = rac{h^2(z)-1}{\left(1+z
ight)^3-1} \stackrel{ ext{flat-ACDM}}{\equiv} \Omega_{ ext{m},0}$$

BL & Shafieloo (2017) Shafieloo, BL, Starobinsky (2018)

Model-independent Measurement of $H_0 r_d$

Consistent with Planck 2015: $H_0 r_d = (9944.0 + - 127.4) \text{ km s}^{-1}$

BL & Shafieloo (2017) Shafieloo, BL, Starobinsky (2018) Model-independent test of FLRW metric & curvature

Clarkson et al. (2008):

$$\mathcal{D}(z) = \frac{1}{\sqrt{-\Omega_k}} \sin\left(\sqrt{-\Omega_k} \int_0^z \frac{\mathrm{d}x}{h(x)}\right)$$
$$\mathcal{O}_k(z) = \frac{(h(z)\mathcal{D}'(z)^2 - 1)}{\mathcal{D}^2(z)} = \frac{\left(\frac{H(z)\mathcal{D}'(z)}{H_0}\right)^2 - 1}{\mathcal{D}^2(z)} \stackrel{\mathsf{FLRW}}{\equiv} \Omega_k$$

Shafieloo & Clarkson (2010)

Model-independent test of FLRW metric & curvature

New formulation:

$$\Theta(z) = h(z)\mathcal{D}'(z) = \frac{(1+z)}{c}H(z)r_{d}\frac{d_{A}(z)}{r_{d}}\frac{\mathcal{D}'(z)}{\mathcal{D}(z)} = F_{AP}(z)\frac{\mathcal{D}'(z)}{\mathcal{D}(z)} \text{ flat-FLRW} 1$$

$$\mathcal{O}_{k}(z) = \frac{\Theta^{2}(z) - 1}{\mathcal{D}^{2}(z)} \stackrel{\text{FLRW}}{\equiv} \Omega_{k}$$
with flat FLRW
by BAO \leftrightarrow SNIa
viations at high-z?

.

. . .

Z

Consistent

Consistenc

Hints of dev

BL & Shafieloo (2017) Shafieloo, BL, Starobinsky (2018)

High-z SNIa: cosmology or systematics?

Possible deviation from LCDM at high-z Difficult to reproduce by dark energy models

BL, Shafieloo, Linder, Kim (2019)

The concordance model of cosmology

Isotropy & Homogeneity FLRW metric

A theory of gravity General relativity

Initial conditions Inflation

• Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But... tensions

Redshift-space Distortion

 $\begin{array}{ccc} {\small {\small {\it Expansion}}\\ (\textit{background}) & & & \\ \ddot{\delta}+2H\dot{\delta}=\frac{3}{2}\Omega_{\rm m}H^2\frac{G_{\rm eff}}{G_{\rm N}}\delta & \longrightarrow D(z) \end{array}$

Linear growth of perturbations:

$$f = rac{{
m d} \ln D}{{
m d} \ln a} \simeq \Omega_m^\gamma$$

 σ_8 : rms of the fluctuations $\,\delta\,$

eBOSS final results (2007.08991)

Reconstructing Expansion from Growth

$$f\sigma_{8} = \sigma_{8,0} \Omega_{\rm m}^{\gamma} \exp\left(-\int_{a}^{1} \Omega_{\rm m}^{\gamma} d\ln a\right) \quad \frac{\text{BL et al. (2018),}}{\text{Shafieloo, BL & Starobinsky (2018)}}$$
EXPANSION GROWTH

Starobinsky (1998) exact formula (in GR):

$$h^2(z) = \left(rac{1+z}{\delta'(z)}
ight)^2 \left(\delta_0'^2 - 3\Omega_{
m m0} \int_0^z \delta(u) |\delta'(u)| rac{{
m d} u}{1+u}
ight)$$

"Only" dependent on
 $(\Omega_{
m m0}, \sigma_{8,0}, \delta(z))$
* Independent of Dark Energy!

Reconstructing Expansion from Growth

Reconstructing Expansion from Growth: Crossing statistics

Crossing statistics (Shafieloo 2011,2012): "How consistent is the considered model with the data?"

→ Mean function ("what we want to test"): best-fit LCDM Multiply by hyperfunction (Chebyshev polynomials with coeffs. C_i)

What is the posterior distribution of C_i ? Deviation from the mean function?

Deformations of the mean function (best-fit, red)

Reconstructing Expansion from Growth: Crossing statistics

Posterior distribution of C_i:

Consistent with $C_0 = 1, C_i = 0$:

 \rightarrow The data does not require deviation from $\Lambda CDM+GR$

Reconstructing Expansion from Growth: Gaussian Process

Observations y_i reconstruct f(z)?

Ansatz: $(y_i, f(z_i))$ are jointly Gaussian, with an input-covariance

The hyper-parameters of the GP are trained on the data

Reconstructing Expansion from Growth: Gaussian Process

Consistent with GR+LCDM

DE energy density is not guaranteed to be positive! $\Omega_{
m DE}(z)=1-rac{\Omega_{
m m0}(1+z)^3}{h^2(z)}$

- **Case A:** $\Omega_{\text{DE}}(z < 2) > 0$
- Case B: $\Omega_{DE}(z < 1) > 0$
- Case C: $\Omega_{\text{DE}}(z < 0.7) > 0$

- Case A: $\Omega_{DE}(z < 2) > 0$
- Case B: $\Omega_{DE}(z < 1) > 0$
- Case C: $\Omega_{DE}(z < 0.7) > 0$

High $\Omega_{m,0}$ and low $\sigma_{8,0}$ allowed by the data

Negative DE Energy Density?

Interesting transient acceleration in the past Toy model: Negative cosmological constant Two DE components X and λ : Constant $\lambda < 0$ X: Phantom behaviour: $w_x(0.1 < z < 1) < -1$

Can mitigate the H_o tension

Not excluded by the data

LCDM)

Calderón, Gannouji, BL, Polarski (2021)

The non-linear Regime: N-body Simulations

Parametrizing Nonlinear DE Perturbations

$$\nabla^2 \Phi = 3\mathcal{H}\Phi' + 3\mathcal{H}^2\Psi + \frac{1}{2}\delta^{ij}\Phi_{,i}\Phi_{,j} + 4\pi G_N a^2(1-2\Phi)\sum_X \bar{\rho}_X \delta_X \,,$$

- Relativistic N-body code k-evolution (Hassani et al)
 - Effects of non-linearity
 - Non-A Dark Energy (k-essence)

<u>Hassani, BL+(2020)</u>

Deviation from GR ($\mu \equiv 1$)

The concordance model of cosmology

Isotropy & Homogeneity FLRW metric

A theory of gravity General relativity Initial conditions Inflation

• Flat Universe dominated by dark energy & dark matter

- Concordance: CMB, BAO, SNIa
- But... tensions

>> The large scale structure hold valuable information

Planck 2018 constraints: power law

Primordial Power Spectrum

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Reference model: Planck 2015 TTTEEE (P15)

Wiggly-whipped inflation (Hazra et al. 2014ab, 2016): WWIA, WWID, WWI'

Planck 2015 TTTEEE+HFI (P15+HFI)

Matter Power Spectrum

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Initial conditions: features visible

Features disappear in the non-linear regime

WWID, P15+HFI can be distinguished till z=0

WWIA, WWI' cannot be distinguished

Power spectrum may not be sufficient

Count-in-cell: Matter density

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Can distinguish between models!

From 1D P(k) to 3D count-in-cell

Non-linear regime: P(k) does not capture all the information

Count-in-cell: Haloes

BL, Shafieloo, Hazra, Smoot, Starobinsky (2018)

Still holds!

But by z=0, difficult to distinguish

- Current data are consistent with Flat FLRW, Λ as dark energy, GR as gravity, but room for deviation
- Modeling the non-linear regime with N-body simulations beyond ΛCDM
 - **Relativistic simulations of DE: quantifying and parametrizing the deviation from ΛCDM**
 - LSS can help constraining the early Universe: 3 dimensional info
- Future surveys (DESI) will help
- iGracias! -
- 감사합니다-