

Analysis of the Higgsstrahlung process $(e^+e^- \rightarrow Z(qq)H)$ in the hadronic decay mode for the context of the ILC with the SDHCAL.

Héctor García Cabrera

CIEMAT

Analysis of the Higgsstrahlung process in the context of the ILC. $\mathcal{L}_{\mathcal{A}}$ The detector model used is the ILD $15\degree$ 02 v02. Large model with the SDHCAL in the Tesla geometry and the SiWECal. [List of all models.](https://github.com/iLCSoft/lcgeo/tree/master/ILD/compact)

SiWECAL SDHCAL

Original scenarios in the proposal of 2015: [ILC Operating Scenarios](https://arxiv.org/abs/1506.07830)

■ H-20 scenario consolidated in the report to Snowmass 2021: [ILC](https://agenda.linearcollider.org/event/9135/) [report to Snowmass 2021](https://agenda.linearcollider.org/event/9135/)

MC Production

- At the moment of the request the request the Snowmass 2015 scenario was used as reference. $L = 1150$ fb -> 10.5 years of operation, which equals to \sim 8.5 years in the H-20 scenario due to the early luminosity upgrade.
- **■** The beam polarization values of operation in all scenarios are $P_{e^-}(80\%)$ and $P_{e^+}(30\%)$ creating the following proportions:

$$
eL = 90\% \quad eR = 10\% pL = 35\% \quad pR = 65\%
$$

 \blacksquare The Snowmass 2015 scenario has the polarization mixture of: $(-, +) = 67.5\%, (+, -) = 22.5\%, (-, -) = 5\%$ and $(+, +) = 5\%$. Producing the following polarization factors for the total samples:

$$
eLpR = 42.175\% \quad eLpL = 25.825\% \n eRpL = 17.425\% \quad eRpR = 14.575\%
$$

■ H-20 polarization mixture: $(-, +) = 45\%$, $(+, -) = 45\%$, $(-, -) = 5\%$ and $(+, +) = 5\%$. Easily adapted from the Snowmass 2021 by weighting the histograms.

The signal studied in this analysis is the Higgsstrahlung process with the Z decaying hadronically:

Also the MC request includes all the Higgs decay modes to make per channel tests: $H \longrightarrow b\overline{b}$, $H \longrightarrow c\overline{c}$, $H \longrightarrow gg$, $H \longrightarrow WW^*$, $H \longrightarrow ZZ^*$, $H \longrightarrow \mu \overline{\mu}$, $H \longrightarrow \tau \overline{\tau}$, $H \longrightarrow \gamma \gamma$ and $H \longrightarrow Z \gamma$

The background includes all processes with two or more jets in the final state.

W pair production.

Z pair production.

Backgrounds II

CIEMAT

The background includes all processes with two or more jets in the final state.

Z hadronic decay.

Single W production (+ charge conjugation).

The background includes all processes with two or more jets in the final state.

Single Z production (+ charge conjugation).

Signal request

Table 1: Full crossections σ_{Full} , number of events from the Snowmass scenario (NEvts = L * σ_{Full} * f_{Pol} ; L = 1150 fb and f_{Pol} being the respective polarization factor), and the requested number of events per event and polarization. The last column is the estimated size of the total requested sample.

Héctor García Cabrera [MC Z\(qq\)H - SDHCAL](#page-0-0) 9

Background request

Table 2: Full crossections σ_{Full} , number of events from the Snowmass scenario (NEvts = L $*\sigma_{Full}*f_{Pol}$; L = 1150 fb and f_{Pol} being the respective polarization factor), and the requested number of events per event and polarization. The last column is the estimated size of the total requested sample.

Final request

Héctor García Cabrera [MC Z\(qq\)H - SDHCAL](#page-0-0) 11

- The samples include the simulation, reconstruction, digitizacion and overlay.
- \blacksquare The next step is to reconstruct the jets using FastJet.
- An event is selected if it has a dijet compatible with the Z mass.
- The parameters from FastJet are optimized by maximizing the percentage of well reconstructed jets. ($Z_{Tag} > 0.9$ and $Z_{Purity} > 0.9$).

$$
\{j_1, j_2\} = \underset{Z_{Tag}}{\text{argmin}} |m_{j1,j2} - m_Z| \; ; \; j_1, j_2 \in N_{Jets} : j_1 \neq j_2
$$
\n
$$
Z_{Tag} = \frac{E_Z^{j1,j2}}{E_Z^{Total}} \; ; \; Z_{Purity} = \frac{E_Z^{j1,j2}}{E_j^{j1,j2}}
$$

Background rejection

Taking into account the incident angle of the two beams of 14mrad and √ $\overline{s}=250$ GeV the computations of the recoil mass are the following:

$$
E_{q\overline{q}} = E_q + E_{\overline{q}} \; ; \; \overrightarrow{p_{q\overline{q}}} = \overrightarrow{p_q} + \overrightarrow{p_{\overline{q}}} \; ; \; M_Z = \sqrt{E_{q\overline{q}}^2 - \overrightarrow{p_{q\overline{q}}}^2}
$$
\n
$$
M_{Recoil}^2 = (2E + E_{q\overline{q}})^2 - ((2p_x + p_{q\overline{q}_x})^2 + p_{q\overline{q}_y}^2 + p_{q\overline{q}_z}^2)
$$
\n
$$
2E = 250.0061252 \, GeV \; ; \; 2p_x = 1.7500286 \, GeV
$$

With this algorithm the optimal parameters have been found to be $R =$ 1.0 and YCut $= 0.004$ and an impact of less than 0.3 % from overlay in the Z reconstruction.

$$
\sigma_{ZH} = \frac{N_{Total} - N_B}{BR(Z \rightarrow q\overline{q}) \cdot \epsilon \cdot L}
$$

The error of the cross section is computed as:

$$
\Delta \sigma = \left(\frac{\Delta N_{Total}}{\epsilon L}\right)_{stat} \oplus \left(\frac{\Delta N_B}{\epsilon L} \oplus \sigma \frac{\Delta \epsilon}{\epsilon} \oplus \sigma \frac{\Delta L}{L}\right)_{syst} ; \frac{\Delta g_{HZZ}}{g_{HZZ}} = \frac{\Delta \sigma_{ZH}}{2\sigma_{ZH}}
$$

 $\Delta N_{Total} = \Delta N_B = 0$ if no fit to the data is performed Question: ¿How can the fit be made in the hadronic channel? Next slide.

- \blacksquare $\Delta \epsilon$ is the greatest challange since it involves the error propagation from the background rejection process.
- $\Delta L/L \sim 0.1\%$ from studies of the ILC and it is negligible compared to the others.

Results from other studies

 $F_M(x; M_H, N_S) = N_S \cdot F_S(x; M_H) + N_B \cdot F_B(x)$

Héctor García Cabrera 17 MC Z(qq)H - SDHCAL 17

BACKUP

Héctor García Cabrera [MC Z\(qq\)H - SDHCAL](#page-0-0) 18

Processes uncertain if they apply as background: aa_2f ; aa_4f ; ae_3f ; ae_5f

- The latest MC production $s\nu$ 02-02-01, set 250 GeV, reconstructed with the SDHCAL $rv02$ -02-01.mILD $\,$ I5 $\,$ o2 $\,$ v02 has now included the overlay events.
- Number of available events 50k in the DST-Merged files analyzed.
- Polarization eLpR (analysis of other polarizations is planned in the future).
- Beam crossing angle correction applied.

The objective of this preliminary analysis is to understand the effect of the newly included overlay into the signal events.

- We run over all possible jet combinatorial possibilities.
- \blacksquare Then we choose the pair that give us the closest mass to the Z known mass.
- Two quality variables are defined:

$$
Z_{Tag} = \frac{E_Z^{j_1,j_2}}{E_Z^{Total}} \ Z_{Purity} = \frac{E_Z^{j_1,j_2}}{E_j^{j_1,j_2}}
$$

where $E_Z^{j_1,j_2}$ Z^{J_1,J_2} : MC-truth di-jet energy from the Z, E_Z^{Total} : MC-truth Z energy and E^{j_1, j_2} : MC-truth total di-jet energy.

The $E_7^{j_1,j_2}$ Z^{J_1,J_2} is computed through a loop over all the PFOs. The associated MC particle energy is weighted using the RecoMCTrughLink excluding the particle with a Higgs as a parent $(pdgId = 25)$.

The algorithm used in this study was ee kt algorithm within fast-jet with ExclusiveYCut strategy. An optimization of y_{cut} has to be done in order to maximize the di-jet reconstruction selection efficiency. A di-jet is considered efficient if $Z_{Tag} > 0.9$ and $Z_{Purity} > 0.9$.

The optimal value in this previous study was $y_{cut} = 0.003$.

Héctor García Cabrera MC Z(qq)H - SDHCAL 22

We want to find the set of parameters from the jet clustering algorithms from which the impact of the overlay is minimal. The two algorithms studied are:

Generalized k_t algorithm for e^+e^- collisions (ee_genkt) in the YCut exclusive mode.

$$
d_{ij} = min(E_i^{2p}, E_j^{2p}) \frac{1 - cos(\theta_{ij})}{(1 - cos(R))} \; ; \; d_{iB} = E_i^{2p}
$$

 k_t algorithm for e^+e^- collisions (e e_kt) in the YCut exclusive mode.

$$
d_{ij} = 2\text{min}(E_i^2, E_j^2)(1 - \cos(\theta_{ij}))
$$

Parameters: ee_genkt -> **YCut**, **R** and **P** ; ee_kt -> **YCut**

CIEMAT

YCut scans like the ones in Slide 4 are performed for different values of **R** and **P** for the ee genkt algorithm and another one for the ee kt algorithm.

CIEMAT

YCut scans like the ones in Slide 4 are performed for different values of **R** and **P** for the ee genkt algorithm and another one for the ee kt algorithm.

From the studied parameters $R = 0.6$ gives the highest efficiency. However this does not mean that gives the best jet reconstruction. The quality variables computed are:

 \blacksquare Z_{Mass} differences (%). The Z mass is reconstructed, following the previous procedure, with and without overlay. This distribution is fitted to a gaus function and then two differences are computed: $ZDiff = |\tilde{M_Z} - M_Z^{NoOverlay}|$ $\frac{Z}{Z}$ /Mz $\text{OverlayDiff} = |M_Z^{\text{Overlay}} - M_Z^{\text{NoOverlay}}|$ _INoOverlay |*| MN*oOverlay
Z Z

 $R = 0.6$ **R** $= 0.6$ **No Overlay**

From the studied parameters $R = 0.6$ gives the highest efficiency. However this does not mean that gives the best jet reconstruction. The quality variables computed are:

- \blacksquare $\mathsf{Z}_{\mathsf{Mass}}$ differences (%). The Z mass is reconstructed, following the previous procedure, with and without overlay. This distribution is fitted to a gaus function and then two differences are computed: $ZDiff=|M_Z-M_Z^{NoOverlay}$ $\frac{Z}{Z}$ / Mz $\text{OverlayDiff} = |M_Z^{\text{Overlay}} - M_Z^{\text{NoOverlay}}|$ _INoOverlay |*| MN*oOverlay
Z Z \blacksquare $\mathsf{Z}_{\mathsf{Mass}}$ "resolution". (σ/M_Z) from the previous fit.
- **Jet Contamination** (%). The mean percentage of jets that have some overlay contribution.

Quality variables

Héctor García Cabrera [MC Z\(qq\)H - SDHCAL](#page-0-0) 28

With this algorithm the optimal parameters have been found to be $R =$ 1.0 and YCut $= 0.004$ and an impact of less than 0.3 % from overlay in the Z reconstruction.

With this algorithm the optimal parameter is $YCut = 0.004$ and an impact of 0.35 % from overlay in the Z reconstruction.

It have been shown the set of parameters that minimizes the overlay effect while efficiently reconstructing the Z mass and showing healthy recoil mass distributions.

A slightly better shape in the recoil mass is obtained from the ee kt method that indicates that it is the algorithm that should be used.

Héctor García Cabrera [MC Z\(qq\)H - SDHCAL](#page-0-0) 32

