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Medical isotope production
Medical isotope production is a key part of future/modern cancer
treatment.
Production methods:

1. Nuclear reactors, currently most medical isotopes are
produced in nuclear reactors (e.g. Tc99 ..)

2. Proton beam, usually cheaper than neutron beams (e.g.
Ac225, Ga67, Cu64 ...)

3. Neutron beam, greater spread of nuclei to produce (e.g.
Mo99, Tc99 ...)

A lot of nuclear reactors are going to be decommissioned, also
there is a supply chain pinch point, which could greatly affect
medical isotope supply.
Potentially the majority of medical isotopes will be produced in
beam facilities in the future.
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How to identify isotope
production process

Many existing beam facilities are not exclusively designed for
medical isotope production (beam spectrum)

-> Many are for material engineering design
-> Fusion development

One process is to use ’our’ (UKAEA) software FISPACT-II to
simulate material irradiation

FISPACT-II
material
irradiation

Isotope
production

Work flow would be slow.
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Build a framework to interrogate
nuclear data

The intention is to use aspects of Mathematics to build a
framework to interrogate nuclear data as a whole.
• Computer friendly

◦ optimal data structure
◦ easily implementable
◦ simple to interogate

• Computationally efficient
◦ make use of existing computing libraries
◦ optimal for modern (and advanced) computer architectures

Adjacency matrix and algebra

Our aim is to use the fact that every directed graph can be
expresses as an adjacency matrix. This matrix has an algebra (a
ring) associated with graphical operations.
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Nuclear data as a graph
Instead of iteratively sampling from the space of possible
materials, consider nuclear data as a graph
• Nuclear data is a concatenation of {decay} ∪ {activation}.

◦ σij is a matrix of transmutation cross sections and decay
coefficients

◦ Graph is link between nuclei i to j if
∫∞

0 σijdE > 0

Figure: Graph of {Tendl17} ∪ {decay2012} - not very useful

• Investigating the entire nuclear data graph will not elucidate
much about how to produce key nuclei.
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Cross section spectrum collapse

transmutation coefficients matrix:

Aij =

∫
σij(E)φ(E)dE∫
φ(E)dE

, (1)

where σij are the cross-section distribution as a function of energy,
E , and projectile flux φ.
This coefficients matrix is conventionally used to predict the
nuclear inventory (or nuclei production) via the inventory equation,

ṅ(t) = An(t). (2)
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Cross section spectrum collapse

Aij is a sparse matrix
• mostly zeros (97%

ish)
• if φ = 0 A can be

arranged to be a
lower triangle matrix

• only the non-zero
components are
stored

representation of a nuclear data
sparse matrix - yellow
corresponds to a non-zero term
in the matrix (P. Kanth)
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Collapse graph
In terms of graphs this collapse is a pruning of the
transmutation/decay nuclear data graph - i.e. reduces the number
of links/nodes (threshold reactions)

Figure: Collapsed pruned graph of 10MeV projectile - with cut off

So it is a more efficient and holistic approach to consider the
collapsed graph/matrix, and identify the initial material. Opposed to
randomly sampling from the space of possible material.
• supply a flux, identify key nuclei and how to produce them.

7 | Pathways to medical isotope production for a given flux



Graph exploration

Conventionally this would be investigated using a graph search
algorithm.
• One to one relation between a graph and its adjacency matrix,

Aij =

{
1 if Acoeff

ij > 0

0 else,
(3)

this is an algebraic representation of the graph, where Aij = 1
represents a directed edge from i to j .
• note: this adjacency matrix can contain elements along the

diagonal, Aii 6= 0.

8 | Pathways to medical isotope production for a given flux



Adjacency matrix

Example graph G:

G(A) :

0

1 2
3

4

5

A =



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1
1 1 0 0 0 0
0 0 0 0 1 0


(4)

Node i links to node j
i.e. node 4 links to nodes 0 and 1.
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Paths
nth power of the adjacency matrix show distance n paths.

G(A) :

0

1 2
3

4

5

A =



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1
1 1 0 0 0 0
0 0 0 0 1 0



G(A2) :

0

1 2
3

4

5

A2 =



0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0
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Paths
• A represents a transmutation/decay path of nuclei i to j
• A2 represents a two step transmutation/decay path of nuclei i

to j
• An represents an n step transmutation/decay path of nuclei i

to j

Transitive closure, A+, of A,

A+
n = A ∪ A2 ∪ A3... ∪ An, (5)

contains all possible paths from i → j , up to length n.
Can be used to identify disconnected subgraphs - sub-matrix
identifying nuclei that cannot transmute/decay into each other (for
a given irradiation).
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Identifying paths

G(A) :

0

1 2
3

4

5

A =



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 1
1 1 0 0 0 0
0 0 0 0 1 0



A+
7 =



0 0 0 0 0 0
2 2 0 0 2 3
2 2 0 1 2 2
2 2 0 0 2 3
3 3 0 0 2 2
2 2 0 0 3 2


All paths up to length 7
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Identifying disconnected graphs

G(A) :

0

1

4

5

2
3

6

A =



0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0



A>7 =



0 0 0 0 0 0 0
2 2 0 0 2 3 0
0 0 2 2 0 0 3
0 0 3 2 0 0 2
3 3 0 0 2 2 0
2 2 0 0 3 2 0
0 0 2 3 0 0 2
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Identifying cycles
Cycles correspond to non-Bateman terms in the solution. They
correspond to exponentially suppressed oscillating terms.

G(A) :

0

1

4

5

2

3

6

A =



0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0



A>7 =



0 0 1 1 0 1 0
0 1 0 1 0 1 1
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Cycles (triangles)
Triangles deviate away from the Bateman type solution. The
general solution of the inventory equation, ṅ = Acoeff n is:

ni(t) = eAij tNj(0), (6)

which is expanded in terms of an eigen-basis. by introducing a
time varying term (sin(ωt)) - complex eigenvalue:
• identify the nature of a transmutation from topology
• important for numerical integration of inventory equation - first

time step estimation

ṅ(t) = Acoeff n(t), (7)

Acoeff n = σn, (8)

∴ ṅ = σn. (9)
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Finding nuclei

The set of nuclei, ñ, with paths to the nuclei i , ni can identified by

ñ = Ani , (10)

where ni = (0, 0, 0, ..., 1, ...)T ñ contains 1’s on the position of the
neighbours with paths to i .
Itterativly applying

ni+1 = Ani , (11)

produces a list of connected nuclei up to m links
{n1, n2, n3, ...., nm}.
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Path connected nuclei
We can identify a path, of length m, between nuclei:

1. Is there a component i → j in the order m transitive closure
A+

m

2. n1 = A+
m−1ej identifies all of the neighbour to j of length m − 1

3. n1a = A+
1 ei − n1 removes the neighbours not linked to node j

(− is over a semi ring). Producing the set of nodes (nuclei)
distance m − 1 from j and 1 from i

4. n2 = A+
m−2ej identifies all of the neighbour to j of length m − 2

5. n2a = A+
1 n1a − n2 removes the neighbours not linked to node j

(− is over a semi ring). Producing the set of nodes (nuclei)
distance m − 2 from j and 2 from i (and 1 from the list n2)

-> Repeat 2→ 5, storing ni until the set is complete
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Conclusion
• Nuclear data shows how nuclei transform, and currently can

be used on a sample by sample basis to inform material
choice in isotope production facilities

• We are proposing a new approach which takes the entirety of
nuclear data into account in one go

• The algebraic framework lends itself to modern computing
architectures and libraries

• This technique has the potential to show what isotopes can be
produced within an existing facility

• The matrix structure and algebraic operations mean that the
algorithms can make use of modern HPC architectures and
libraries.

-> Next phase is to apply to real data and optimise symbolic LU
factorisation
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