Measurements of Higgs Boson Properties in the $H \rightarrow WW$ Channel in CMS

Lorenzo Viliani - INFN of Florence (Italy)

CIEMAT Seminar May 26th, 2022

10 years after the Higgs boson discovery...

... what have we learned?

From discovery to precision

Lorenzo Viliani (INFN) - CIEMAT seminar

In 10 years the paradigm has changed...

2012

Today

From searching for a new particle to precision measurements!

But let's start from the beginning...

The role of the Higgs boson in the Standard Model

- The interaction of the Higgs boson with the particles provides the a mass.
- The Higgs boson couplings with bosons and fermions are proportional to their mass.

Courtesy of R. Seidita (all cartoon diagrams)

What are the needed ingredients to produce the Higgs boson?

A big machine! The CERN Large Hadron Collider!

- Collides protons at $\sqrt{s} = 13$ TeV (soon 13.6 TeV), but also heavy ions.
- Reaches nominal instantaneous luminosities of 1x10³⁴ fb⁻¹.
- 4 interaction points, where 4 experiments are placed:
 - ALICE
 - ATLAS
 - CMS
 - LHCb

What are the needed ingredients to produce the Higgs boson?

A big particle detector! The Compact Muon Solenoid (CMS) experiment

- General purpose detector with hermetic design.
- A complex system of particle detectors:
 - Silicon pixel tracker
 - Silicon strip tracker
 - PbWO 4 crystal EM calorimeter
 - Hadron calorimeter
 - Muon system
- **3.8 T solenoid** to bend charged particles tracks

Higgs boson production

Lorenzo Viliani (INFN) - CIEMAT seminar

Higgs boson decay

- Main bosonic decay modes: WW, ZZ, yy
- Main fermionic decay modes: bb, TT

The Run 2 of the LHC

- A huge physics program was explored in Run2, spanning energies from O(GeV) to O(TeV).
- An unprecedented data sample of 138 fb⁻¹ was collected in pp collisions at √s=13 TeV.
- Highlights:
 - All the main Higgs boson production modes observed with $>5 \sigma$ either in single channels or in the combinations.
 - $H \rightarrow \mu \mu$ direct evidence.
 - \circ m_H = 125.38 ± 0.14 GeV
 - Differential measurements in all the main channels

The H→WW decay channel

The H \rightarrow WW decay channel

- One of the main channels for cross-section and coupling measurements.
- Several features characterize the sensitivity of a particular channel:
 - the cross section times branching ratio, i.e. σ
 (ggH)xBR(HWW);
 - the final state signature;
 - the background discrimination power.

- BR(W \rightarrow hadrons)~70% \Rightarrow a lot of signal, but huge QCD background at hadron colliders.
- BR(W \rightarrow Iv)~10% \Rightarrow smaller signal but "clean" final state and less background.

The $H \rightarrow WW \rightarrow 2I2v$ signature

What we can measure is the missing momentum in the transverse plane with respect to the proton beams.

$$ec{p}_T^{miss} = \ -\sum_{obj} ec{p}_T^{obj}$$

So no peak, no party?

What do physics books tell us about this channel?

- Higgs and W spins play a role! —

This is an important handle to deal with backgrounds! Small $\Delta \phi_{\parallel}$ means that m_{\parallel} is also very low. Does not help with backgrounds, but it means that one of the 2 leptons will have very low pT

We need dilepton triggers with low pT thresholds

Background processes

Non-resonant WW production 💊

No spin correlation and both Ws are on-shell. Data-driven normalization.

Top quark processes

Large cross section and similar signature except for the 2 b-jets. B-jets can be identified (and suppressed) using b-tagging algorithms. Data-driven normalization.

Drell-Yan processes

Z/y

Huge cross-section, dominant when looking at leptons with same flavor. Enters also the eµ final state via the leptonic tau decays. Fully data-driven (tau embedding method for emu final states).

Depending on the channel, other backgrounds can be important. Such as the nonprompt lepton production, i.e. jets faking prompt leptons (fully data-driven).

May 26, 2022

Let's dig into the real analysis now

CMS-PAS-HIG-20-013 New for Moriond/EW 22

Analysis goals - cross sections

- Cross section measurements of different production mechanisms.
- Cross section measurement in the Simplified Template Cross Section (STXS) framework.

- Measure cross sections in pre-defined template bins per production mode with the goal of:
 - minimizing theory dependence;
 - maximizing experimental sensitivity;
 - isolating possible BSM effects.
- No fiducial phase space (only $|y_{H}| < 2.5$):
 - Possible to combine different decay channels.
 - X Larger extrapolation uncertainties.

Analysis goals - couplings

- The $H \rightarrow WW$ decay provides direct access to the Higgs coupling with W bosons.
- But measuring different production mechanisms simultaneously allows constraining the couplings with Z and top

• Couplings are constrained by a parameterization of σxBR in terms of the k-framework, e.g.:

$$(\sigma \times \mathcal{BR})_{gg \to H \to WW} \propto \kappa_t^2 \kappa_W^2$$
$$(\sigma \times \mathcal{BR})_{VBF \to H \to WW} \propto (0.73\kappa_W^2 + 0.27\kappa_Z^2) \cdot k_W^2$$

Analysis overview

Category	Number of leptons	Number of jets	Sub-categorization
ggH	2	-	$(DF, SF) \times (0 \text{ jets}, 1 \text{ jet}, \ge 2 \text{ jets})$
VBF	2	≥ 2	(DF, SF)
VH2j	2	≥ 2	(DF, SF)
WHSS	2	≥ 1	$(DF, SF) \times (0 \text{ jets}, 1 \text{ jet})$
WH3ℓ	3	0	SF lepton pair with opposite or same sign
ZH3ℓ	3	≥ 1	(1 jet, 2 jets)
$ZH4\ell$	4		(DF, SF)

- The analysis targets ggH, VBF, WH and ZH production mechanisms exploring a variety of final states.
 - **ggH**: gg \rightarrow H(WW \rightarrow 2l2 ν)
 - **VBF**: $qq \rightarrow qqH(WW \rightarrow 2I2\nu)$
 - VH2j: V(qq) H(WW \rightarrow 2l2 ν)

New measurements with the full Run2 dataset!

- WHSS: $W(I_{\nu}) H(W(I_{\nu}) W(qq))$
- WH3I: $W(I_{\mathcal{V}}) H(WW \rightarrow 2|2_{\mathcal{V}})$
- **ZH3I**: Z(II) H($W(I_{\mathcal{V}}) W(qq)$)
- **ZH4I**: Z(II) H(WW->2I2v)

Reload of the measurements already reported in <u>CMS-PAS-HIG-19-017</u>

Ingredients

Low pT triggers

- eµ triggers with pT>23, 12 GeV
- Single lepton triggers to recover efficiency

High performance electron/muon identification

- Requiring lepton isolation is fundamental to tackle nonprompt lepton backgrounds.
- Extensive use of MVA techniques.

Efficient b-tagging

• Needed to veto events containing a b-tagged jet

State of the art Monte Carlo simulations

- Background modelling is important for processes estimated from simulations.
- Using Powheg, Madgraph5_aMC@NLO, etc.

And much more....

• anti-kT (DR=4) jets; PUPPI MET; pileup jet ID; a variety of corrections, scale-factors, k-factors, calibrations, validations, ...

Lorenzo Viliani (INFN) - CIEMAT seminar

ggH channels - categories

Key aspects:

- Most sensitive channels.
- Different flavor (DF) channels have better performance, but same flavor (SF) are also taken into account.
- For SF the DY background is fully data-driven.

Control regions (CR) used in the fit to constrain background yield Similar control regions are present for all channels

ggH channels - fit variables

2-dimensional template fit using these observables

Do not need dedicated WW control regions.

WW yield constrained using data directly in the signal region.

Lorenzo Viliani (INFN) - CIEMAT seminar

VBF channels - categories

23

VBF channels - fit variables

May 26, 2022

Lorenzo Viliani (INFN) - CIEMAT seminar

24

VH hadronic channel

- Contributions from both ZH and WH (impossible to distinguish them).
- The dijet mass peaks at the Z/W mass.
- Large ggH contamination.

WH 3 leptons

Key aspects:

- Consider the combinatorics of lepton charge and flavor.
- Main backgrounds are WZ and Nonprompt lepton production.
- BDT trained to maximize the signal-to-background separation.
- BDT used as fit variable.

WH 2 same-sign leptons

This is a reasonably good proxy for the true Higgs boson mass

$$\widetilde{m}_{\rm H} = \sqrt{(p_{jj} + 2p_\ell)^2}$$

Key aspects:

- Target hadronic decays of one of the W arising from the Higgs boson.
- Require the other 2 leptons to have same-sign to reduce backgrounds.
- Main remaining backgrounds are WZ and Nonprompt.

Lorenzo Viliani (INFN) - CIEMAT seminar

ZH 3 leptons

Key aspects:

- Similar to WHSS, but for the ZH production mechanism.
- The lep+MET and jj systems are close-by in the transverse plane (remember the spins!).
- The main background is WZ.

ZH 4 leptons

W H 2 2

Key aspects:

- 4 leptons makes this a very clean channel, the signal is small though.
- 2 sub-categories according to lepton flavor and charge.
- The only background is ZZ.
- Train a BDT to optimize the signal-to-background separation and use it as fit variable.

Control regions

138 fb⁻¹ (13 TeV)

- Important to use control regions for a few reasons:
 - use them in the fit to constrain background yields directly from data; 0
 - use them to check the shape agreement between data and simulation. 0

Let's now put all the ingredients together...

The fit structure

- Simultaneous maximum likelihood template fit to all signal and control regions.
 - \circ 207 categories
 - \circ 1974 bins

$$\mathcal{L}(\vec{\nu},\mu) = \left(\prod_{j=1}^{N_{bins}} \mathcal{P}\left(n_{j},\mu s_{j}(\vec{\nu}) + b_{j}(\vec{\nu})\right)\right) \cdot \mathcal{N}(\vec{\nu})$$

- Different fits are performed according to different signal models:
 - \circ 1 μ scaling all Higgs signals;
 - \circ $-1\,\mu$ per production mode;
 - \circ $-1\,\mu$ per STXS bin;
 - kappa-framework.

Inclusive results

Distribution of events as a function of the statistical significance of their corresponding bin in the analysis templates

Precision on the inclusive signal-strength measurement is below 10%! Dominant contribution of systematic uncertainties.

Production mode results

- Signal strength measurement precision:
 ~11% (ggH), ~35% (VBF and VH);
- μ_{ggH} measurement is systematics-limited.
 Similar size of stat and syst for μ_{VBF} and μ_{WH}.
 - μ_{ZH} limited by statistical uncertainties.

How do we compare with other channels?

May 26, 2022

Lorenzo Viliani (INFN) - CIEMAT seminar

35

k-framework interpretation

• We assume the same scaling k for bosons (k_v) and for fermions (k_f) .

$$\sigma \mathcal{B}(\mathbf{X}_i \to \mathbf{H} \to \mathbf{WW}) = \kappa_i^2 \frac{\kappa_V^2}{\kappa_H^2} \sigma_{SM} \mathcal{B}_{SM}(\mathbf{X}_i \to \mathbf{H} \to \mathbf{WW})$$

IMS

- Extremely good precision for k_v!
 And competitive measurement of k_f.
- Comparable with ATLAS full Run 2 combination of all Higgs decay channels!

NFN

STXS measurements

- STXS is a differential measurement unfolded to particle-level.
- The analysis categories at reconstructed-level are adapted to match the particle-level STXS bin definitions.

Lorenzo Viliani (INFN) - CIEMAT seminar

STXS results

Precisions at low #jets and low p_T^H comparable to/better than other single decay channels!

Also nice precision for mildly boosted ggH and VH STXS categories!

May 26, 2022

Lorenzo Viliani (INFN) - CIEMAT seminar

- The current LHC dataset allowed the simultaneous measurement of 14 STXS bins.
- NB: Correlations between some measurements can be sizeable because of event migrations between nearby categories.

Discussion on uncertainties

Uncertainty source	$\Delta\mu/\mu$	$\Delta \mu_{ m ggH}/\mu_{ m ggH}$	${\it \Delta \mu_{ m qqH}}/{\mu_{ m qqH}}$	$\Delta \mu_{ m WH}/\mu_{ m WH}$	$\Delta \mu_{ m ZH}/\mu_{ m ZH}$
Theory (signal)	4%	5%	13%	2%	< 1%
Theory (background)	3%	3%	2%	4%	5%
Fake lepton rate	2%	2%	9%	15%	4%
Integrated luminosity	2%	2%	2%	2%	3%
b-tagging	2%	2%	3%	< 1%	2%
Lepton efficiency	3%	4%	2%	1%	4%
Jet energy scale	1%	< 1%	2%	< 1%	3%
Jet energy resolution	< 1%	1%	< 1%	< 1%	3%
$p_{\mathrm{T}}^{\mathrm{miss}}$ scale	< 1%	1%	< 1%	2%	2%
PDF	1%	2%	< 1%	< 1%	2%
Parton shower	< 1%	2%	< 1%	1%	1%
Backg. norm.	3%	4%	6%	4%	6%
Stat. uncertainty	5%	6%	28%	21%	31%
Syst. uncertainty	9%	10%	23%	19%	11%
Total uncertainty	10%	11%	36%	29%	33%
					V
	Syst. is dominant		Stat. ~ Syst.		Stat. is domina

Lorenzo Viliani (INFN) - CIEMAT seminar

What else can we do in this channel?

Go differential

Fiducial differential measurement of the $H \rightarrow WW$ production cross section as function of the Higgs boson pT and number of associated jets.

Search for high mass resonances

- Search for high mass resonances decaying to $WW \rightarrow 2I2v$:
 - signal interpreted as an additional heavy Higgs boson with SM-like properties (EW singlet), with different widths and ggH/VBF fraction assumptions;
 - large number of additional interpretations
 based on 2HDM and MSSM scenarios;
 - Broad excess above 2 σ observed around 650 GeV!

CMS-PAS-HIG-20-016 New result for Moriond/EW 2022

Conclusions & Takeaways

Conclusions/takeaways

• A lot has been learned from the Higgs boson discovery 10 years ago!

• The paradigm has changed: from searching for a new particle to the precision measurement of its properties.

- Up to now everything seems very SM-like, but much more is yet to come:
 - Run2 data analysis is not over yet!
 - The Run3 of the LHC is right around the corner.
 - And HL-LHC awaits in the future.

Conclusions/takeaways

- $H \rightarrow WW$ is one of the most promising channels for cross section and couplings measurements.
 - Given the extreme complexity, this analysis was also a huge effort in terms of Ο time and personpower!
 - 6 PhD students + a number of postdocs and seniors. Ο
- Several measurements start to be limited by the impact of systematic uncertainties.
 - We will need to improve objects/backgrounds/strategy to perform even Ο Thanks for your better in Run3.
- Stay tuned for more Run2 and new Run3 results to come!

Supplementary slides

Next step: go differential

- Fiducial differential cross section measurements provide:
 - fundamental test of the SM predictions;
 - a probe of phase spaces sensitive to BSM effects.
- Differential: measure cross section in bins of some observables (p_T^H, #jets, ...).
- **Fiducial**: extrapolate the measurement to a restricted phase space that matches as closely as possible the experimental selections.

- Reduce model dependence by avoiding the extrapolation to the full phase space.
- ✓ Long measurement lifetime and easy comparison with different theories.
- X Limited to few variables at the same time.
- X Hard to combine different channels without extrapolating to the full phase space.
- X Non trivial to include complex variables (e.g. DNNs) in the fiducial phase space.

- Many of the same considerations as DF channels apply, with one important difference
- When selecting leptons with the same flavor (ee, $\mu\mu$) by far the largest background contribution comes from $qq \rightarrow Z \rightarrow \ell\ell$ processes (DY)
- In order to extract the signal, a DNN discriminant is trained, with a tight cut on its output
- Problem:
 - In $qq \rightarrow Z \rightarrow \ell \ell$ events E_T^{miss} comes from detector inefficiencies
 - The phase space region with best S/B is at high E_T^{miss}
 - Very hard to correctly model in MC
- Once we cut on the DNN's output, we end up with a badly modeled background
- To circumvent this, a data driven technique is used (next slide)
- In all SF channels only the number of events enters the fit

SF channels – DY background estimation

- N_{in}/N_{out} is calculated directly from data as the signal contribution in the loose DNN selection can be safely neglected
- The loose-to-tight transfer factor A_H is taken from MC

2016 rates kept independent because of differing MC setup; Dyττ rates split per year because embedded samples (i.e., data) are used

	~~ .			
Trigger	Year	Requirements		
	2016	$p_{\rm T} > 25 { m GeV}, \eta < 2.1 \text{ or } p_{\rm T} > 27 { m GeV}, 2.1 < \eta < 2.5$		
Single electron	2017	$p_{\rm T} > 35 { m GeV}, \eta < 2.5$		
	2018	$p_{ m T} > 32{ m GeV}, \eta < 2.5$		
2	2016	$p_{\rm T} > 24$ GeV, $ \eta < 2.4$		
Single muon	2017	$p_{ m T} > 27{ m GeV}, \eta < 2.4$		
	2018	$p_{\rm T} > 24{ m GeV}, \eta < 2.4$		
Double electron	All years	$p_{\text{T1}} > 23 \text{ GeV}, p_{\text{T2}} > 12 \text{ GeV}, \eta_{1,2} < 2.5$		
Double muon	All years	$p_{\text{T1}} > 17 \text{ GeV}, p_{\text{T2}} > 8 \text{ GeV}, \eta_{1,2} < 2.4$		
Flectron - muon	All years	$p_{\rm T1} > 23 { m GeV}, p_{\rm T2} > 12 { m GeV}$		
	All years	$p_{T2} > 8$ GeV in first part of 2016 data taking		

ggHDF event requirements

Category	Sub-categories	Selection		
		$p_{\rm T1} > 25$ GeV, $p_{\rm T2} > 10$ GeV (2016) or 13 GeV		
Global selection	81 — 1	$p_{\mathrm{T}}^{\mathrm{miss}} > 20~\mathrm{GeV}, p_{\mathrm{T}}^{\ell\ell} > 30~\mathrm{GeV}, m_{\ell\ell} > 12~\mathrm{GeV}$		
		$e\mu$ pair with opposite charge		
		$m_{\rm T}^{\rm H} > 60 { m GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 { m GeV}$		
	$\ell^{\pm}\ell^{\mp} n \leq 20 C_0 V$	$p_{\rm T2} \leq 20 {\rm ~GeV}$		
	$\ell^{-}\ell^{+}, p_{T2} \ge 20 \text{ GeV}$	No jet with $p_{\rm T} > 30 { m GeV}$		
0-jet ggH tagged		No b-tagged jet with $p_{\rm T} > 20 \text{ GeV}$		
0-jet ggi i taggeu	Tom CD	As SR, no $m_{\rm T}^{\rm H}$ requirement, $m_{\ell\ell} > 50 {\rm ~GeV}$		
	10p CK	At least 1 b-tagged jet with 20 GeV $< p_T < 30$ GeV		
	-+ CD	As SR but with $m_{\rm T}^{\rm H} < 60 {\rm GeV}$		
	τ ' τ CR	$30 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$		
5 .		$m_{\rm T}^{\rm H} > 60 \text{ GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 \text{ GeV}$		
	0+0T < 20 C M	$p_{T2} \leq 20 \text{ GeV}$		
	$\ell^{\perp}\ell^{\perp}$, $p_{T2} \ge 20 \text{ GeV}$	1 jet with $p_{\rm T} > 30 {\rm GeV}$		
1 jot ggH taggod		No b-tagged jet with $p_{\rm T} > 20 \text{ GeV}$		
1-jet ggi i taggeu	T CD	As SR, no $m_{\rm T}^{\rm H}$ requirement, $m_{\ell\ell} > 50 {\rm GeV}$		
	10p CK	At least 1 b-tagged jet with $p_{\rm T} > 30 \text{ GeV}$		
	-+ CD	As SR but with $m_{\rm T}^{\rm H} < 60 {\rm ~GeV}$		
	$\tau \tau CK$	$30 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$		
		$m_{\rm T}^{\rm H} > 60 \text{ GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 \text{ GeV}$		
		$p_{\text{T2}} \leq 20 \text{ GeV}$		
	SR	At least 2 jets with $p_{\rm T} > 30 {\rm GeV}$		
		No b-tagged jet with $p_{\rm T} > 20 {\rm GeV}$		
2-jet ggH tagged		$m_{ii} < 65 \text{ GeV} \text{ or } 105 \text{ GeV} < m_{ii} < 120 \text{ GeV}$		
	T CD	As SR, no $m_{\rm T}^{\rm H}$ requirement, $m_{\ell\ell} > 50 {\rm ~GeV}$		
	lop CK	At least 1 of the leading jets b-tagged		
		As SR but with $m_{\rm T}^{\rm H} < 60 {\rm GeV}$		
	$\tau^+\tau^-$ CK	$30 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$		

ggHSF event requirements

Category	Sub-categories	Selection	
		$p_{\rm T1} > 25 { m GeV}, p_{\rm T2} > 10 { m GeV}$ (2016) or 13 ${ m GeV}$	
Global selection	12	$p_{ m T}^{ m miss} > 20~{ m GeV}, p_{ m T}^{\ell\ell} > 30~{ m GeV}, m_{\ell\ell}-m_Z^{} > 15~{ m GeV}$	
Giobal selection	60 	ee or $\mu\mu$ pair with opposite charge	
		No b-tagged jets with $p_{\rm T} > 20 {\rm ~GeV}$	
	ee	$m_{\ell\ell} < 60 \text{ GeV}, m_{ m T}^{ m H} > 90 \text{ GeV}$	
	μμ	$ \Delta \phi_{\ell \ell} < 2.3$, DYMVA above threshold	
0 jot gaH taggad	W+W-CP	As SR, $m_{\ell\ell} > 100 \text{ GeV}$	
0-jet ggi i taggeu	W W CR	$m_{\rm T}^{\rm H} > 60 {\rm ~GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 {\rm ~GeV}$	
	Top CR	As SR, $m_{\ell\ell} > 100 \text{ GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 \text{ GeV}$	
		At least one b-tagged jet with 20 GeV $< p_{\rm T} < 30$ GeV	
	ee	$m_{\ell\ell} < 60 \text{ GeV}, m_{\rm T}^{\rm H} > 80 \text{ GeV}$	
	μμ	$ \Delta \phi_{\ell \ell} < 2.3$, DYMVA above threshold	
1 jot ggH taggad		As SR, $m_{\ell\ell} > 100 \text{ GeV}$	
1-jet ggi i taggeu	W W CR	$m_{\rm T}^{\rm H} > 60 {\rm ~GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{ m miss}) > 30 {\rm ~GeV}$	
	Top CP	As SR, $m_{\ell\ell} > 100 \text{ GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 \text{ GeV}$	
	10p CK	At least one b-tagged jet with $p_{\rm T} > 30 \text{ GeV}$	
	ee	$m_{\ell\ell} < 60~{ m GeV}, 65~{ m GeV} < m_{ m T}^{ m H} < 150~{ m GeV}$	
	μμ	DYMVA above threshold	
2-jot galt taggod	W^+W^-CR	As SR, $m_{\ell\ell} > 100 \text{ GeV}$	
2-jet ggi i taggeu	W W CR	$m_{\rm T}^{\rm H} > 60 {\rm ~GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{ m miss}) > 30 {\rm ~GeV}$	
	Top CP	As SR, $m_{\ell\ell} > 100 \text{ GeV}, m_{\rm T}(\ell 2, p_{\rm T}^{\rm miss}) > 30 \text{ GeV}$	
	10p CK	At least one of the leading jets b-tagged	

VBF DF/SF event requirements

Category Sub-categories		Selection		
		$p_{T1} > 25 \text{ GeV}, p_{T2} > 10 \text{ GeV}$ (2016) or 13 GeV		
Global selection	-	$p_{ m T}^{ m miss} > 20~{ m GeV}, p_{ m T}^{\ell\ell} > 30~{ m GeV}, m_{\ell\ell} > 12~{ m GeV}$		
14		$e\mu$ pair with opposite charge		
		$60 \text{ GeV} < m_{\text{T}}^{\text{H}} < 125 \text{ GeV}, m_{T}(\ell 2, p_{\text{T}}^{\text{miss}}) > 30 \text{ GeV}$		
	Cianal magion	2 jets with $p_{\rm T} > 30 {\rm ~GeV}$		
	Signal region	no b-tagged jet with $p_{\mathrm{T}} > 20~\mathrm{GeV}$		
2 jot VBE taggod		$m_{jj} > 120 { m GeV}$		
2-jet v Dr taggeu	Top control region	As signal region, no m_T^H requirement, $m_{\ell\ell} > 50 \text{ GeV}$		
	top control region	at least 1 of the leading jets b-tagged		
	$\tau^+\tau^-$ control ration	As signal region but with $m_T^H < 60 \text{ GeV}$		
	i i control legion	$30 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$		

Category	Sub-categories	Selection		
		$p_{T1} > 25 \text{ GeV}, p_{T2} > 10 \text{ GeV}$ (2016) or 13 GeV		
Global selection	.=	$p_{\rm T}^{\rm miss} > 20~{ m GeV}, p_{\rm T}^{\ell\ell} > 30~{ m GeV}, m_{\ell\ell} > 12~{ m GeV}$		
		ee or $\mu\mu$ pair with opposite charge		
	ee	$m_{\ell\ell} < 60 \text{ GeV}, 65 \text{ GeV} < m_{ m T}^{ m H} < 150 \text{ GeV}$		
	μμ	$ \Delta \phi_{\ell\ell} < 1.6, m_{jj} > 350~{ m GeV}$		
2-jot VBE taggod		DYMVA above threshold		
2-jet v DI taggeu		As signal region, $m_{\ell\ell} > 100 \text{ GeV}$		
	W W CR	$m_{ m T}^{ m H} > 60~{ m GeV}, m_{T}(\ell 2, p_{ m T}^{ m miss}) > 30~{ m GeV}$		
	T CD	As signal region, $m_{\ell\ell} > 100 \text{ GeV}, m_T(\ell 2, p_T^{\text{miss}}) > 30 \text{ GeV}$		
	10p CK	At least one of the leading jets b-tagged		

WHSS/WH3I event requirements

Category	Sub-categories	Selection	
		$p_{\rm T1} > 25 {\rm ~GeV}, p_{\rm T2} > 20 {\rm ~GeV},$	
Global selection	-	$m_{\ell\ell} > 12~{ m GeV}$, $\Delta\eta_{jj} > 2$, $p_{ m T}^{ m miss} > 30~{ m GeV}$,	
		$\widetilde{m}_{\rm H}$ > 50 GeV, no b-tagged jet with $p_{\rm T}$ > 20 GeV	
	1 jot $au(uu)$	One jet with $p_{\rm T}$ > 30 GeV,	
Signal region	1-jet $e\mu(\mu\mu)$	$e\mu(\mu\mu)$ pair with same charge	
Signal legion	2 jot $au(uu)$	At least two jets with $p_{\rm T}$ > 30 GeV,	
	2 -jet $e\mu(\mu\mu)$	$e\mu(\mu\mu)$ pair with same charge	

Category	Sub-categories	Selection		
		$p_{ m T1} > 25~{ m GeV}, p_{ m T2} > 20~{ m GeV}, p_{ m T3} > 15~{ m GeV},$		
Clobal soluction		$\mathrm{Q}_{3\ell}=\pm 1$, $\min(m_{\ell\ell})>12$ GeV, $\Delta\eta_{\ell\ell}>2.0$,		
Global selection	-	No jets with $p_{\rm T}$ > 30 GeV, no b-tagged jet with $p_{\rm T}$ > 20 GeV,		
		$p_{ m T}^{ m miss} > 30~{ m GeV}$, $\widetilde{m}_{ m H} > 50~{ m GeV}$		
Signal region	OSSF	No SSSF lepton pair, $ m_{\ell\ell} - m_Z > 20$ GeV, $p_T^{\text{miss}} > 40$ Ge		
Signal legion	SSSF	SSSF lepton pair		
	117	No SSSF lepton pair, $ m_{\ell\ell} - m_Z < 20$ GeV,		
Control region	VV Z	$p_{ m T}^{ m miss} > 45~{ m GeV}, m_{3\ell} > 100~{ m GeV}$		
	Ζγ	No SSSF lepton pair, $ M_{\ell\ell} - m_Z < 20$ GeV,		
		$p_{ m T}^{ m miss} < 40$ GeV, $80 < m_{3\ell} < 100$ GeV		

ZH3I/ZH4I event requirements

Category Sub-categories		Selection		
		$p_{\rm T1} > 25~{ m GeV}, p_{\rm T2} > 20~{ m GeV}, p_{\rm T3} > 15~{ m GeV},$		
Clobal solution	-	$\mathrm{Q}_{3\ell}=\pm 1$, $\min(m_{\ell\ell})>12$ GeV,		
Global selection		no b-tagged jet with $p_{\rm T}$ > 20 GeV, $ m_{\ell\ell} - m_Z $ < 25 GeV,		
		$ m_{3\ell}-m_Z >20~{ m GeV}$		
Signal region	1-jet	=1 jet with $p_{\rm T}$ > 30 GeV, $\Delta \phi(\ell p_{\rm T}^{\rm miss}, j(j)) < \pi/2$		
Signal region	2-jet	\geq 2 jets with $p_{\rm T}$ > 30 GeV, $\Delta \phi(\ell p_{\rm T}^{\rm miss}, j(j)) < \pi/2$		
Control region	1-jet WZ	=1 jet with $p_{\rm T}$ > 30 GeV, $\Delta \phi(\ell p_{\rm T}^{\rm miss}, j(j)) > \pi/2$		
	2-jet WZ	\geq 2 jets with $p_{\rm T}$ > 30 GeV, $\Delta \phi(\ell p_{\rm T}^{\rm miss}, j(j)) > \pi/2$		

Category	Sub-categories	Selection
	0	$p_{T1} > 25 \text{ GeV}, p_{T2} > 20 \text{ GeV}, p_{T3} > 15 \text{ GeV}, p_{T4} > 10 \text{ GeV},$
Global selection	-	$\mathrm{Q}_{4\ell}=0,\min(m_{\ell\ell})>12~\mathrm{GeV},$
		no b-tagged jet with $p_{ m T} > 20$ GeV, $ m_{\ell\ell}-m_Z < 15$ GeV,
	XSF	Same flavor X pair, $m_{4\ell} > 140$ GeV,
Signal region		$10 < m_{\ell\ell}^X < 65~{ m GeV}, p_{ m T}^{ m miss} > 35~{ m GeV}$
Signal legion	XDF	Different flavor X pair, $10 < m_{\ell\ell}^X < 65$ GeV,
		$p_{ m T}^{ m miss}>20~{ m GeV}$
Control region ZZ		$75 < m_{\ell\ell}^{ m X} < 105$ GeV, $p_{ m T}^{ m miss} < 35$ GeV

ggH DF yields

-		-	
Process	0-jets ggH DF	1-jet ggH DF	2-jets ggH DF
ggH	$1875 \pm 45 \ (2157)$	$881 \pm 28 \ (942)$	$67 \pm 5 (71)$
VBF	15 ± 2 (23)	62 ± 7 (92)	4 ± 1 (6)
WH	$103 \pm 7 (51)$	$124 \pm 10 \ (60)$	18 ± 2 (9)
ZH	38 ± 3 (19)	33 ± 3 (17)	7 ± 1 (4)
ttH		1 ± 1 (1)	1 ± 1 (1)
Total signal	2032 ± 51 (2250)	1101 ± 31 (1111)	99 ± 6 (90)
WW	$37297 \pm 285 \ (34781)$	$12703 \pm 307 \ (14932)$	$748 \pm 121 \ (1101)$
Top quark	$10165 \pm 179 \ (10204)$	$19711 \pm 298 \ (19766)$	3989 ± 123 (3868)
Nonprompt	$4407 \pm 225~(5888)$	1999 ± 141 (2769)	252 ± 42 (262)
DY	$495 \pm 24 \ (563)$	822 ± 12 (792)	87 ± 4 (86)
$\mathrm{VZ}/\mathrm{V}\gamma^*$	$1464 \pm 45~(1776)$	$1297 \pm 44~(1531)$	$123 \pm 7 \ (140)$
$V\gamma$	$1181 \pm 19 \ (1273)$	723 ± 18 (777)	$57 \pm 3 (56)$
Triboson	38 ± 1 (39)	66 ± 1 (72)	13 ± 1 (14)
Total background	$55045 \pm 409~(54524)$	37321 ± 453 (40639)	5269 ± 178 (5526)
Total prediciton	$57077 \pm 412 \ (56773)$	38422 ± 454 (41750)	5368 ± 178 (5616)
Data	57024	38373	5380

ggH SF yields

	* × 0	•	÷
Process	0-jets ggH SF	1-jet ggH SF	2-jets ggH SF
ggH	$780 \pm 31 \ (891)$	397 ± 18 (422)	86 ± 7 (89)
VBF	5 ± 1 (7)	29 ± 4 (42)	10 ± 1 (13)
WH	24 ± 3 (11)	34 ± 4 (16)	12 ± 1 (6)
ZH	14 ± 1 (7)	16 ± 2 (8)	7 ± 1 (3)
ttH	-		1 ± 1 (1)
Total signal	$823 \pm 31 \ (915)$	476 ± 18 (489)	114 ± 7 (112)
WW	$7034 \pm 184~(6464)$	$2711 \pm 128 \ (3064)$	$276 \pm 61 (480)$
Top quark	$1345 \pm 42 \ (1294)$	$3711 \pm 75 \ (3524)$	$1879 \pm 51 \ (1758)$
Nonprompt	$641 \pm 88~(701)$	366 ± 54 (412)	$103 \pm 18 \ (119)$
DY	3149 ± 271 (2706)	$4098 \pm 197~(3284)$	$1403 \pm 83 \ (829)$
$\mathrm{VZ}/\mathrm{V}\gamma^*$	327 ± 13 (371)	270 ± 10 (301)	63 ± 4 (70)
$V\gamma$	$138 \pm 6 \ (145)$	$193 \pm 15 \ (201)$	48 ± 5 (47)
Triboson	4 ± 1 (5)	10 ± 1 (11)	6 ± 1 (6)
	la. fo		0 K
Total background	$12639 \pm 342 \ (11684)$	$11359 \pm 253 \ (10797)$	$3777 \pm 117 \ (3309)$
Total prediction	$13462 \pm 343 \ (12599)$	$11835 \pm 254 \ (11286)$	3891 ± 117 (3421)
Data	13507	11976	3950

VBF/VH2j yields

Process	VBF DF	VBF SF	VH2j DF	VH2j SF
ggH	$114 \pm 8 \ (115)$	21 ± 2 (21)	36 ± 3 (39)	27 ± 2 (29)
VBF	$62 \pm 11 \ (91)$	39 ± 5 (57)	2 ± 1 (3)	2 ± 1 (2)
WH	14 ± 1 (7)	1 ± 1 (1)	26 ± 4 (13)	16 ± 2 (8)
ZH	5 ± 1 (2)	1 ± 1 (0)	13 ± 2 (7)	8 ± 1 (4)
ttH	2	-		
Total signal	195 ± 14 (215)	$62\pm 6~(79)$	77 ± 5 (62)	53 ± 3 (43)
WW	$1319 \pm 57 \ (1368)$	$109\pm17~(102)$	$98 \pm 44 \ (205)$	56 ± 22 (134)
Top quark	$2875 \pm 65 \ (3148)$	$267 \pm 8 \ (249)$	$743 \pm 32 \ (730)$	$539 \pm 16 \ (514)$
Nonprompt	$404 \pm 36 \ (399)$	28 ± 4 (32)	$81 \pm 13 \ (113)$	62 ± 10 (72)
DY	$249 \pm 4 \ (241)$	$402 \pm 27 \ (465)$	77 ± 3 (77)	555 ± 48 (479)
$VZ/V\gamma^*$	$184 \pm 9~(221)$	11 ± 1 (12)	49 ± 3 (55)	23 ± 2 (27)
$ m V\gamma$	$110 \pm 4 \ (117)$	10 ± 1 (10)	26 ± 3 (25)	$16 \pm 5 \ (17)$
Triboson	11 ± 1 (11)	1 ± 1 (1)	6 ± 1 (7)	4 ± 1 (3)
Total background	$5154 \pm 94~(5505)$	$827 \pm 33 \ (871)$	1080 ± 56 (1212)	$1255 \pm 56 \ (1245)$
Total prediction	5349 ± 95 (5720)	$889 \pm 34 \ (950)$	$1157 \pm 56 \ (1274)$	$1308 \pm 56 \ (1288)$
Data	5254	862	1164	1318

VH leptonic yields

Process	WHSS	WH3ℓ	ZH3ℓ	$ZH4\ell$
ggH	1 ± 1 (1)	<u> </u>	_	<u> </u>
VBF		_	_	_
WH	148 ± 12 (69)	44 ± 5 (20)	2 ± 1 (1)	_
ZH	10 ± 11 (5)	3 ± 1 (2)	74 ± 7 (36)	19 ± 2 (10)
ttH	1 ± 1 (1)	_	1 ± 1 (1)	_
Total signal	159 ± 12 (76)	48 ± 5 (22)	76 ± 7 (38)	19 ± 2 (10)
WW	40 ± 1 (39)	-		-
Top quark	62 ± 1 (62)	-	-	—
Nonprompt	$596 \pm 37 \ (805)$	$55\pm 6~(85)$	$166 \pm 16 \ (215)$	—
DY	28 ± 7 (35)		30 ± 1 (29)	1 ± 1 (1)
$\mathrm{VZ}/\mathrm{V}\gamma^*$	$1309 \pm 26 \ (1355)$	311 ± 10 (276)	$1905 \pm 25 \ (1796)$	45 ± 1 (39)
$V\gamma$	$135 \pm 11 \ (162)$	14 ± 3 (20)	36 ± 6 (40)	_
Triboson	41 ± 1 (41)	$15 \pm 1 \ (15)$	30 ± 1 (30)	3 ± 1 (3)
Total background	$2211 \pm 47~(2498)$	$396 \pm 12 \ (397)$	2167 ± 30 (2110)	50 ± 1 (44)
Total prediciton	2370 ± 49 (2574)	444 ± 13 (419)	2243 ± 31 (2148)	$69 \pm 2 (54)$
Data	2359	423	2315	69