Measurements of Higgs Boson Properties in the H→WW Channel in CMS

Lorenzo Viliani - INFN of Florence (Italy)

CIEMAT Seminar May 26th, 2022

10 years after the Higgs boson discovery…

… what have we learned?

From discovery to precision

May 26, 2022 Lorenzo Viliani (INFN) - CIEMAT seminar

In 10 years the paradigm has changed…

2012

Today

From searching for a new particle to precision measurements!

But let's start from the beginning…

The role of the Higgs boson in the Standard Model

- The interaction of the Higgs boson with the particles provides the a mass.
- The Higgs boson couplings with bosons and fermions are proportional to their mass.

Courtesy of R. Seidita (all cartoon diagrams)

What are the needed ingredients to produce the Higgs boson?

A big machine! The CERN Large Hadron Collider!

- Collides protons at \sqrt{s} = 13 TeV (soon 13.6) TeV), but also heavy ions.
- Reaches nominal instantaneous luminosities of $1x10^{34}$ fb⁻¹.
- 4 interaction points, where 4 experiments are placed:
	- ALICE
	- **ATLAS**
	- CMS
	- LHCb

What are the needed ingredients to produce the Higgs boson?

A big particle detector! The Compact Muon Solenoid (CMS) experiment

- General purpose detector with hermetic design.
- A complex system of particle detectors:
	- \circ Silicon pixel tracker
	- Silicon strip tracker
	- PbWO 4 crystal EM calorimeter
	- Hadron calorimeter
	- Muon system
- **3.8 T solenoid to bend charged particles tracks**

Higgs boson production

May 26, 2022 Lorenzo Viliani (INFN) - CIEMAT seminar 8

Higgs boson decay

- Main bosonic decay modes: WW, ZZ, γγ
- Main fermionic decay modes: bb, ττ

The Run 2 of the LHC

- A huge physics program was explored in Run2, spanning energies from O(GeV) to O(TeV).
- An unprecedented data sample of 138 fb⁻¹ was collected in pp collisions at √s=13 TeV.
- Highlights:
	- All the main Higgs boson production modes observed with $>5 \sigma$ either in single channels or in the combinations.
	- \circ H \rightarrow μμ direct evidence.
	- o m_H = 125.38 ± 0.14 GeV
	- Differential measurements in all the main channels

The H→WW decay channel

The H→WW decay channel

- One of the main channels for cross-section and coupling measurements.
- Several features characterize the sensitivity of a particular channel:
	- o the cross section times branching ratio, i.e. σ (ggH)xBR(HWW);
	- the final state signature;
	- the background discrimination power.

- $BR(W\rightarrow hadrons)~70\% \Rightarrow$ a lot of signal, but huge QCD background at hadron colliders.
- $BR(W\rightarrow V\rightarrow 10\% \Rightarrow$ smaller signal but "clean" final state and less background.

The H→WW→2l2v signature

What we can measure is the missing momentum in the transverse plane with respect to the proton beams.

$$
\vec{p}_T^{miss}\ =\ -\sum_{obj}\vec{p}_T^{obj}
$$

So no peak, no party?

What do physics books tell us about this channel?

- m_H =125 GeV and m_W =80 GeV \rightarrow one of the 2 Ws must be off-shell
- Higgs and W spins play a role!

This is an important handle to deal with backgrounds! Small $Δφ_u$ means that m_u is also very low.

Does not help with backgrounds, but it means that one of the 2 leptons will have very low pT

We need dilepton triggers with low pT thresholds

Background processes

Non-resonant WW production

No spin correlation and both Ws are on-shell. Data-driven normalization.

Top quark processes

Large cross section and similar signature except for the 2 b-jets. B-jets can be identified (and suppressed) using b-tagging algorithms. Data-driven normalization.

Drell-Yan processes

Huge cross-section, dominant when looking at leptons with same flavor. Enters also the eμ final state via the leptonic tau decays. Fully data-driven (tau embedding method for emu final states).

Depending on the channel, other backgrounds can be important. Such as the nonprompt lepton production, i.e. jets faking prompt leptons (fully data-driven).

Let's dig into the **real analysis now**

http://cds.cern.ch/record/2803738?ln=en

[CMS-PAS-HIG-20-013](http://cds.cern.ch/record/2803738?ln=en) New for Moriond/EW 22

Analysis goals - cross sections

- Cross section measurements of different production mechanisms.
- Cross section measurement in the Simplified Template Cross Section (STXS) framework.

- Measure cross sections in pre-defined template bins per production mode with the goal of:
	- minimizing theory dependence;
	- maximizing experimental sensitivity;
	- isolating possible BSM effects.
- \bullet No fiducial phase space (only $|y_H|$ < 2.5):
	- Possible to combine different decay channels.
	- X Larger extrapolation uncertainties.

17

Analysis goals - couplings

- The $H\rightarrow WW$ decay provides direct access to the Higgs coupling with W bosons.
- But measuring different production mechanisms simultaneously allows constraining the couplings with Z and top

Couplings are constrained by a parameterization of σ xBR in terms of the k-framework, e.g.:

$$
(\sigma \times BR)_{gg \to H \to WW} \propto \kappa_t^2 \kappa_W^2
$$

$$
(\sigma \times BR)_{VBF \to H \to WW} \propto (0.73 \kappa_W^2 + 0.27 \kappa_Z^2) \cdot k_W^2
$$

Analysis overview

- The analysis targets ggH, VBF, WH and ZH production mechanisms exploring a variety of final states.
	- \bullet ggH: gg→H(WW→2l2 ν)
	- VBF: $qq \rightarrow qqH(WW \rightarrow 2l2v)$
	- \bullet VH2i: V(qq) H(WW \rightarrow 2l2 ν)

New measurements with the full Run2 dataset!

- \bullet WHSS: W(l_v) H(W(l_v) W(qq))
- WH3I: W($|v\rangle$ H(WW \rightarrow 2l2 v)
- **ZH3I:** $Z(II) H(W(IV) W(qq))$
- **ZH4I:** $Z(11)$ H(WW->212 ν)

Reload of the measurements already reported in [CMS-PAS-HIG-19-017](http://cds.cern.ch/record/2758367?ln=en)

Ingredients

Low pT triggers

- eu triggers with pT>23, 12 GeV
- Single lepton triggers to recover efficiency

High performance electron/muon identification

- Requiring lepton isolation is fundamental to tackle nonprompt lepton backgrounds.
- Extensive use of MVA techniques.

Efficient b-tagging

Needed to veto events containing a b-tagged jet

State of the art Monte Carlo simulations

- Background modelling is important for processes estimated from simulations.
- Using Powheg, Madgraph5_aMC@NLO, etc.

And much more….

anti-kT (DR=4) jets; PUPPI MET; pileup jet ID; a variety of corrections, scale-factors, k-factors, calibrations, validations, …

May 26, 2022 Lorenzo Viliani (INFN) - CIEMAT seminar

ggH channels - categories

Key aspects:

- Most sensitive channels.
- Different flavor (DF) channels have better performance, but same flavor (SF) are also taken into account.
- For SF the DY background is fully data-driven.

Control regions (CR) used in the fit to constrain background yield Similar control regions are present for all channels

ggH channels - fit variables

2-dimensional template fit using these observables

Do not need dedicated WW control regions.

WW yield constrained using data directly in the signal region.

VBF channels - categories

VBF channels - fit variables

May 26, 2022 Lorenzo Viliani (INFN) - CIEMAT seminar 24

VH hadronic channel

- Contributions from both ZH and WH (impossible to distinguish them).
- The dijet mass peaks at the Z/W mass.
- Large ggH contamination.

WH 3 leptons

Key aspects:

- Consider the combinatorics of lepton charge and flavor.
- Main backgrounds are WZ and Nonprompt lepton production.
- BDT trained to maximize the signal-to-background separation.
- BDT used as fit variable.

WH 2 same-sign leptons

This is a reasonably good proxy for the true Higgs boson mass

$$
\widetilde{m}_{\rm H}=\sqrt{(p_{jj}+2p_{\ell})^2}
$$

Key aspects:

- Target hadronic decays of one of the W arising from the Higgs boson.
- Require the other 2 leptons to have same-sign to reduce backgrounds.
- Main remaining backgrounds are WZ and Nonprompt.

May 26, 2022 Lorenzo Viliani (INFN) - CIEMAT seminar 27

ZH 3 leptons

- Similar to WHSS, but for the ZH production mechanism.
- The lep+MET and jj systems are close-by in the transverse plane (remember the spins!).
- The main background is WZ.

ZH 4 leptons

Key aspects:

- 4 leptons makes this a very clean channel, the signal is small though.
- 2 sub-categories according to lepton flavor and charge.
- The only background is ZZ.
- Train a BDT to optimize the signal-to-background separation and use it as fit variable.

Control regions

- Important to use control regions for a few reasons:
	- \circ use them in the fit to constrain background yields directly from data;
	- \circ use them to check the shape agreement between data and simulation.

Let's now put all the ingredients together…

http://cds.cern.ch/record/2803738?ln=en

The fit structure

- Simultaneous maximum likelihood template fit to all signal and control regions.
	- 207 categories
	- \circ 1974 bins

$$
\mathcal{L}(\vec{v}, \mu) = \left(\prod_{j=1}^{N_{bins}} \mathcal{P}\left(n_j; \mu \right) s_j(\vec{v}) + b_j(\vec{v}) \right) \cdot \mathcal{N}(\vec{v})
$$

- Different fits are performed according to different signal models:
	- \circ 1 µ scaling all Higgs signals;
	- \circ 1 μ per production mode;
	- \circ 1 µ per STXS bin;
	- kappa-framework.

Inclusive results

Distribution of events as a function of the statistical significance of their corresponding bin in the analysis

Precision on the inclusive signal-strength measurement is below 10%! Dominant contribution of systematic uncertainties.

Production mode results

- Signal strength measurement precision: \circ ~11% (ggH), ~35% (VBF and VH);
- μ_{gph} measurement is systematics-limited. Similar size of stat and syst for μ_{VBE} and μ_{WHE} .
	- μ_{ZH} limited by statistical uncertainties.

How do we compare with other channels?

k-framework interpretation

 \bullet We assume the same scaling k for bosons (k_y) and for fermions (k_f).

$$
\sigma \mathcal{B}(X_i \to H \to WW) = \kappa_i^2 \frac{\kappa_V^2}{\kappa_H^2} \sigma_{SM} \mathcal{B}_{SM}(X_i \to H \to WW)
$$

CMS

- \bullet Extremely good precision for k_V! o And competitive measurement of k_f.
- Comparable with ATLAS full Run 2 combination of all Higgs decay channels!

NFN

STXS measurements

- STXS is a differential measurement unfolded to particle-level.
- The analysis categories at reconstructed-level are adapted to match the particle-level STXS bin definitions.

STXS results

Precisions at low #jets and low p_T^H comparable to/better than other single decay channels!

Also nice precision for mildly boosted ggH and VH STXS categories!

- The current LHC dataset allowed the simultaneous measurement of 14 STXS bins.
- NB: Correlations between some measurements can be sizeable because of event migrations between nearby categories.

Discussion on uncertainties

May 26, 2022 Lorenzo Viliani (INFN) - CIEMAT seminar 39

What else can we do in this channel?

http://cds.cern.ch/record/2803738?ln=en

Go differential

Fiducial differential measurement of the H→WW production cross section as function of the Higgs boson pT and number of associated jets.

Search for high mass resonances

- Search for high mass resonances decaying to $WW\rightarrow212v$:
	- signal interpreted as an additional heavy Higgs boson with SM-like properties (EW singlet), with different widths and ggH/VBF fraction assumptions;
	- large number of additional interpretations based on 2HDM and MSSM scenarios;
	- \circ Broad excess above $\frac{2}{9}$ observed around 650 GeV!

[CMS-PAS-HIG-20-016](https://cms.cern.ch/iCMS/analysisadmin/get?analysis=HIG-20-016-pas-v9.pdf) New result for Moriond/EW 2022

Conclusions & Takeaways

Conclusions/takeaways

• A lot has been learned from the Higgs boson discovery 10 years ago!

● The paradigm has changed: from searching for a new particle to the precision measurement of its properties.

- Up to now everything seems very SM-like, but much more is yet to come:
	- Run2 data analysis is not over yet!
	- The Run3 of the LHC is right around the corner.
	- And HL-LHC awaits in the future.

Conclusions/takeaways

attention!

- \bullet H \rightarrow WW is one of the most promising channels for cross section and couplings measurements.
	- Given the extreme complexity, this analysis was also a huge effort in terms of time and personpower!
	- 6 PhD students + a number of postdocs and seniors.
- Several measurements start to be limited by the impact of systematic uncertainties.
	- We will need to improve objects/backgrounds/strategy to perform even better in Run3. Thanks for your
- Stay tuned for more Run2 and new Run3 results to come!

Supplementary slides

Next step: go differential

- Fiducial differential cross section measurements provide:
	- fundamental test of the SM predictions;
	- a probe of phase spaces sensitive to BSM effects.
- **Differential**: measure cross section in bins of some observables $(p_T^H, \# \text{jets}, \ldots).$
- **Fiducial**: extrapolate the measurement to a restricted phase space that matches as closely as possible the experimental selections.

- Reduce model dependence by avoiding the extrapolation to the full phase space.
- Long measurement lifetime and easy comparison with different theories.
- X Limited to few variables at the same time.
- X Hard to combine different channels without extrapolating to the full phase space.
- X Non trivial to include complex variables (e.g. DNNs) in the fiducial phase space.

- Many of the same considerations as DF channels apply, with one important difference \bullet
- When selecting leptons with the same flavor (ee, $\mu\mu$) by far the largest background contribution \bullet comes from $qq \rightarrow Z \rightarrow \ell \ell$ processes (DY)
- In order to extract the signal, a DNN discriminant is trained, with a tight cut on its output \bullet
- **Problem:** \bullet
	- In $qq \to Z \to \ell \ell$ events E_T^{miss} comes from detector inefficiencies
	- The phase space region with best S/B is at high E_T^{miss} \bullet
	- Very hard to correctly model in MC
- Once we cut on the DNN's output, we end up with a badly modeled background \bullet
- To circumvent this, a data driven technique is used (next slide) \bullet
- In all SF channels only the number of events enters the fit \bullet

SF channels – DY background estimation

- N_{in}/N_{out} is calculated directly from data as the signal contribution in the loose DNN selection \bullet can be safely neglected
- The loose-to-tight transfer factor A_H is taken from MC \bullet

2016 rates kept independent because of differing MC setup; DyTT rates split per year because embedded samples (i.e., data) are used

ggH DF event requirements

ggH SF event requirements

VBF DF/SF event requirements

WHSS/WH3l event requirements

ZH3l/ZH4l event requirements

ggH DF yields

VBF/VH2j yields

VH leptonic yields

