

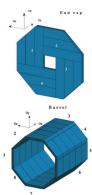
Analysis of the Higgsstrahlung process $(e^+e^- o Z(qq)H)$ in the hadronic decay mode for the context of the ILC with the SDHCAL.

Héctor García Cabrera

CIEMAT

- Analysis of the Higgsstrahlung process in the context of the ILC.
- The detector model used is the ILD /5_o2_v02. Large model with the SDHCAL in the Tesla geometry and the SiWECal. List of all models.

SiWECAL

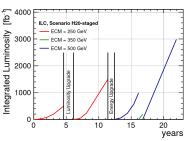


SDHCAL

Original scenarios in the proposal of 2015: ILC Operating Scenarios

	$\int \mathcal{L} dt [\text{fb}^{-1}]$					
\sqrt{s}	G-20	H-20	I-20	Snow		
250 GeV	500	2000	500	1150		
350 GeV	200	200	1700	200		
$500\mathrm{GeV}$	5000	4000	4000	1600		

■ H-20 scenario consolidated in the report to Snowmass 2021: ILC report to Snowmass 2021



- At the moment of the request the request the Snowmass 2015 scenario was used as reference. L = 1150 fb -> 10.5 years of operation, which equals to \sim 8.5 years in the H-20 scenario due to the early luminosity upgrade.
- The beam polarization values of operation in all scenarios are $P_{e^-}(80\%)$ and $P_{e^+}(30\%)$ creating the following proportions in the case of the (-,+) as example:

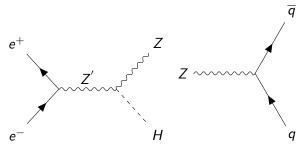
$$eL = 90\%$$
 $eR = 10\%$
 $pL = 35\%$ $pR = 65\%$

■ The Snowmass 2015 scenario has the polarization mixture of: (-,+)=67.5%, (+,-)=22.5%, (-,-)=5% and (+,+)=5%. Producing the following polarization factors for the total samples:

$$eLpR = 42.175\%$$
 $eLpL = 25.825\%$ $eRpL = 17.425\%$ $eRpR = 14.575\%$

■ H-20 polarization mixture: (-,+)=45%, (+,-)=45%, (-,-)=5% and (+,+)=5%. Easily adapted from the Snowmass 2021 by weighting the histograms.

The signal studied in this analysis is the Higgsstrahlung process with the Z decaying hadronically:

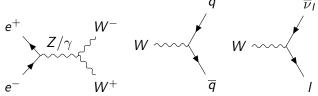


Also the MC request includes all the Higgs decay modes to make per channel tests: $H\longrightarrow b\overline{b},\ H\longrightarrow c\overline{c},\ H\longrightarrow gg,\ H\longrightarrow WW^*,\ H\longrightarrow ZZ^*,\ H\longrightarrow \mu\overline{\mu},\ H\longrightarrow \tau\overline{\tau},\ H\longrightarrow \gamma\gamma$ and $H\longrightarrow Z\gamma$

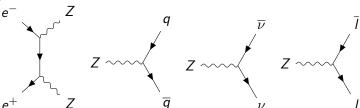
Héctor García Cabrera MC Z(qq)H - SDHCAL

The background includes all processes with two or more jets in the final state.

W pair production.

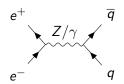


Z pair production.

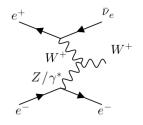


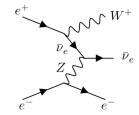
The background includes all processes with two or more jets in the final state.

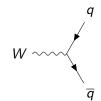
Z hadronic decay.



Single W production (+ charge conjugation).

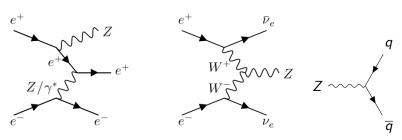






The background includes all processes with two or more jets in the final state.

Single Z production (+ charge conjugation).



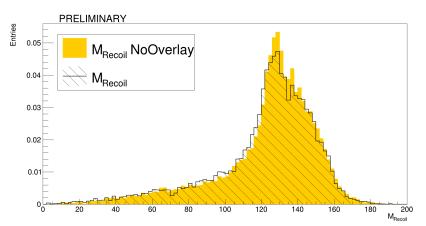
- The samples include the simulation, reconstruction, digitizacion and overlay.
- The next step is to reconstruct the jets using FastJet.
- An event is selected if it has a dijet compatible with the Z mass.
- The parameters from FastJet are optimized by maximizing the percentage of well reconstructed jets. ($Z_{Tag} > 0.9$ and $Z_{Purity} > 0.9$).

$$\{j_1, j_2\} = argmin|m_{j1,j2} - m_Z| \; ; \; j_1, j_2 \in N_{Jets} \; ; j_1 \neq j_2$$
 $Z_{Tag} = \frac{E_Z^{j1,j2}}{E_Z^{Total}} \; ; \; Z_{Purity} = \frac{E_Z^{j1,j2}}{E^{j1,j2}}$

Taking into account the incident angle of the two beams of 14mrad and $\sqrt{s} = 250 \, GeV$ the computations of the recoil mass are the following:

$$\begin{split} E_{q\overline{q}} &= E_q + E_{\overline{q}} \; ; \; \; \overrightarrow{p_{q\overline{q}}} = \overrightarrow{p_q} + \overrightarrow{p_q} \; ; \; \; M_Z = \sqrt{E_{q\overline{q}}^2 - \overrightarrow{p_{q\overline{q}}^2}} \\ M_{Recoil}^2 &= (2E + E_{q\overline{q}})^2 - ((2p_x + p_{q\overline{q}_x})^2 + p_{q\overline{q}_y}^2 + p_{q\overline{q}_z}^2) \\ 2E &= 250.0061252 \, GeV \; ; \; \; 2p_x = 1.7500286 \, GeV \end{split}$$

With this algorithm the optimal parameters have been found to be YCut = 0.002 and an impact of less than 0.3~% from overlay in the Z reconstruction in the study of the signal:



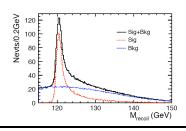
$$\sigma_{ZH} = rac{N_{Total} - N_B}{BR(Z
ightarrow q \overline{q}) \cdot \epsilon \cdot L}$$

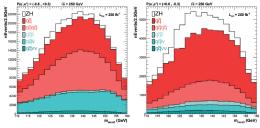
The error of the cross section is computed as:

$$\Delta\sigma = \left(\frac{\Delta N_{Total}}{\epsilon L}\right)_{stat} \oplus \left(\frac{\Delta N_B}{\epsilon L} \oplus \sigma \frac{\Delta \epsilon}{\epsilon} \oplus \sigma \frac{\Delta L}{L}\right)_{syst} \; ; \; \frac{\Delta g_{HZZ}}{g_{HZZ}} = \frac{\Delta \sigma_{ZH}}{2\sigma_{ZH}}$$

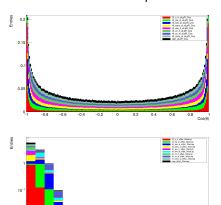
- lacksquare $\left(rac{\Delta\sigma}{\sigma}
 ight)_{stat}=S^{-1}\;;\;S=rac{N_S}{\sqrt{N_S+N_B}}$
- $\Delta \epsilon$ and ΔN_B are the greatest challange since it involves the error propagation from the background rejection process.
- \blacksquare $\Delta L/L \sim 0.1\%$ from studies of the ILC and it is negligible compared to the others.

$$F_M(x; \mathbf{M}_H, N_S) = N_S \cdot F_S(x; \mathbf{M}_H) + N_B \cdot F_B(x)$$

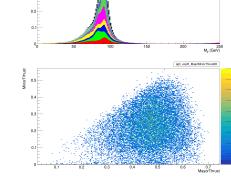




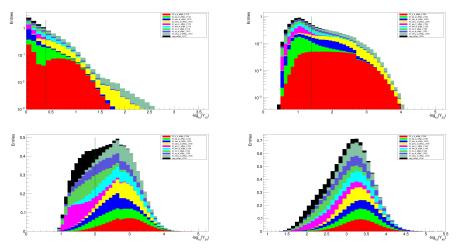
Proposal of background rejection variables: $Cos(\theta)$ and M_Z and the Number of Isolated Leptons



10-2



Other background rejection variables: Y_{12} , Y_{23} , Y_{34} and Y_{45}

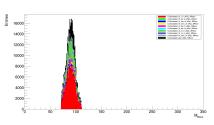


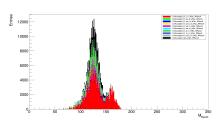
Background rejection. Cuts

CIEMAT

Cut 1	$M_{Reco} \in Mass_Z \pm 20 GeV$
Cut 2	$ Cos(\theta_{DiJet}) < 0.9$
Cut 3	$-Log_10(Y12) < 0.4$
Cut 4	$ \text{IF} - Log_10(Y23) > 1.4 \& NJets + NIsoLep >= 2 \\ \parallel \rightarrow TwoJetTopologyAnalysis = true $
Cut 5	ELSE IF $-Log_10(Y34) > 2.0 \& NJets + NIsoLep >= 3$
Cut 6	
Cut 7	$\ \rightarrow Four Jet Topology Analysis = true$ ELSE
	$\ \rightarrow OtherJetTopologyAnalysis = true$
2Jets	IF $E_{DiJet}/E_{Visible} < 0.9$
	→ Continue to next topology
	ELSE IF $ M_{DiJet} - M_Z < 10 \& \text{NIsoLep} = 0$
	∥ → True
3.Jets	$ \text{IF } \chi_Z^2 < \chi_W^2 \text{ & NIsoLep} = 0 $
00000	$\parallel \rightarrow \text{Continue to next topology}$
4.Jets	Must pass all the following cuts:
1000	Thrust pass an tile following cuts: $Thrust_{Major} < 0.4 \& Thrust_{Minor} < 0.15$
	$ Cos(\theta_{DiJets}) < 0.9 \& Cos(\theta_{DiJets}) < 0.9$
	$ M_{DiJet} - M_Z < 0.9$ & $ Cos(v_{DiJet_B}) < 0.9$
	$\begin{vmatrix} m_{DiJet} - m_Z \end{vmatrix} < 20$ $\begin{vmatrix} \chi_{ZH}^2 < \chi_{WW}^2 & \chi_{ZH}^2 < \chi_{ZZ}^2 \end{vmatrix}$
0.1	∥ → True
Other	$Thrust_{Major} < 0.4 \& Thrust_{Minor} < 0.15$
	$\parallel \rightarrow$ True

Polarizations:	P(eLpR)	P(eRpL)	P(eLpL)	P(eRpR)
Final State	$\sigma(fb)$	$\sigma(fb)$	$\sigma(fb)$	$\sigma(fb)$
Z(q(q)) + H	343.03	219.49		
$q\overline{q}$	127965.53	70416.74		
$q\overline{q}\nu\nu$	1063.75	392.79		
$q\overline{q}l\nu$	29043.16	260.16	190.53	190.64
$q\overline{q}ll$	2261.39	1686.21	1155.83	1157.20
$q\overline{q}q\overline{q}$	16271.48	743.53		





$L = 250 \ fb^{-1}$

Polarizations:		P(eLpR)		P(eRpL)		P(eLpL)		P(eRpR)
Final State	ε	Events	ε	Events	ε	Events	ε	Events
$Z(q\overline{(q)}) + H$	24.28 %	20822	23.3967 %	12838				
$q\overline{q}$	0.40~%	129204	0.22~%	38592				
$q\overline{q} u u$	4.54~%	12073	3.35 %	3293				
$q\overline{q}l u$	0.62~%	44870	0.19 %	124	1.09 %	521	1.10 %	528
$q\overline{q}ll$	1.43~%	8113	0.93 %	3945	0.67 %	1928	0.68~%	1963
$q\overline{q}q\overline{q}$	7.25~%	294906	9.80 %	18210				
$S = \frac{N_S}{\sqrt{N_S + N_B}}$ $\frac{\Delta \sigma_{ZH}}{\sqrt{N_S + N_B}} = S^{-1}$		29.157		46.26				
$\frac{\Delta \sigma_{ZH}}{\sigma_{ZH}} = S^{-1}$		3.42~%		2.16~%				
$\frac{\sigma_{ZH}}{S_F}$	22.99							
$\frac{\Delta \sigma_{ZH}}{\sigma_{ZH}}_F = S^{-1}$	4.34~%							

- Results similar to previous MVA studies.
- Still fit to $F_B + F_S$ seems not possible.
- NEXT STEP: Test model Independence.
- LAST STEP: Compute systematic errors.

19

BACKUP

Open questions

Processes uncertain if they apply as background: aa_2f; aa_4f; ae_3f; ae_5f

- The latest MC production *sv02-02-01*, set 250 GeV, reconstructed with the SDHCAL *rv02-02-01*.mILD_I5_o2_v02 has now included the overlay events.
- Number of available events 50k in the DST-Merged files analyzed.
- Polarization eLpR (analysis of other polarizations is planned in the future).
- Beam crossing angle correction applied.

The objective of this preliminary analysis is to understand the effect of the newly included overlay into the signal events.

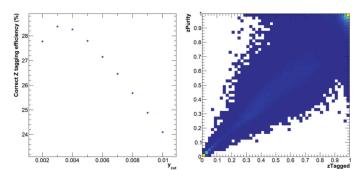
- We run over all possible jet combinatorial possibilities.
- Then we choose the pair that give us the closest mass to the Z known mass.
- Two quality variables are defined:

$$Z_{Tag} = rac{E_{Z}^{j_{1},j_{2}}}{E_{Z}^{Total}} \ \ Z_{Purity} = rac{E_{Z}^{j_{1},j_{2}}}{E^{j_{1},j_{2}}}$$

where $E_Z^{j_1,j_2}$: MC-truth di-jet energy from the Z, E_Z^{Total} : MC-truth Z energy and E^{j_1,j_2} : MC-truth total di-jet energy.

■ The $E_Z^{j_1,j_2}$ is computed through a loop over all the PFOs. The associated MC particle energy is weighted using the RecoMCTrughLink excluding the particle with a Higgs as a parent (pdgId = 25).

The algorithm used in this study was $ee_kt_algorithm$ within fast-jet with ExclusiveYCut strategy. An optimization of y_{cut} has to be done in order to maximize the di-jet reconstruction selection efficiency. A di-jet is considered efficient if $Z_{Tag} > 0.9$ and $Z_{Purity} > 0.9$.



The optimal value in this previous study was $y_{cut} = 0.003$.

We want to find the set of parameters from the jet clustering algorithms from which the impact of the overlay is minimal. The two algorithms studied are:

■ Generalized k_t algorithm for e^+e^- collisions (ee_genkt) in the YCut exclusive mode.

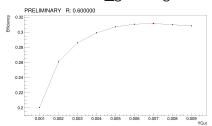
$$d_{ij} = min(E_i^{2p}, E_j^{2p}) \frac{1 - cos(\theta_{ij})}{(1 - cos(R))}$$
 ; $d_{iB} = E_i^{2p}$

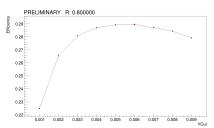
■ k_t algorithm for e^+e^- collisions (ee_kt) in the YCut exclusive mode.

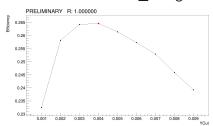
$$d_{ij} = 2min(E_i^2, E_j^2)(1 - cos(\theta_{ij}))$$

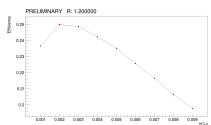
Parameters: ee_genkt -> YCut, R and P ; ee_kt -> YCut

YCut scans like the ones in Slide 4 are performed for different values of **R** and **P** for the ee_genkt algorithm and another one for the ee_kt algorithm.

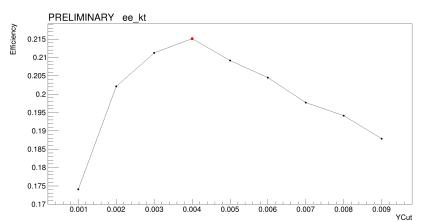








YCut scans like the ones in Slide 4 are performed for different values of **R** and **P** for the ee_genkt algorithm and another one for the ee_kt algorithm.



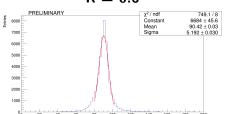
Héctor García Cabrera MC Z(qq)H - SDHCAL 26

From the studied parameters R=0.6 gives the highest efficiency. However this does not mean that gives the best jet reconstruction. The quality variables computed are:

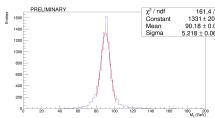
■ Z_{Mass} differences (%). The Z mass is reconstructed, following the previous procedure, with and without overlay. This distribution is fitted to a gaus function and then two differences are computed: $ZDiff = |M_{Z} - M^{NoOverlay}|/M_{Z}$

$$ZDiff = |M_Z - M_Z^{NoOverlay}|/M_Z$$

 $OverlayDiff = |M_Z^{Overlay} - M_Z^{NoOverlay}|/M_Z^{NoOverlay}$



R = 0.6 No Overlay

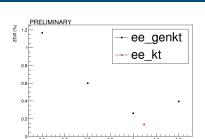


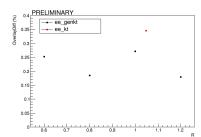
From the studied parameters R=0.6 gives the highest efficiency. However this does not mean that gives the best jet reconstruction. The quality variables computed are:

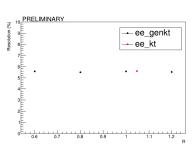
■ Z_{Mass} differences (%). The Z mass is reconstructed, following the previous procedure, with and without overlay. This distribution is fitted to a gaus function and then two differences are computed: $ZDiff = |M_Z - M_Z^{NoOverlay}|/M_Z$ $OverlayDiff = |M_Z^{Overlay} - M_Z^{NoOverlay}|/M_Z^{NoOverlay}$

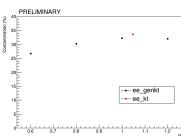
- Z_{Mass} "resolution". (σ/M_Z) from the previous fit.
- Jet Contamination (%). The mean percentage of jets that have some overlay contribution.

29

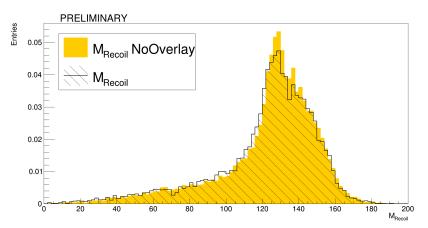




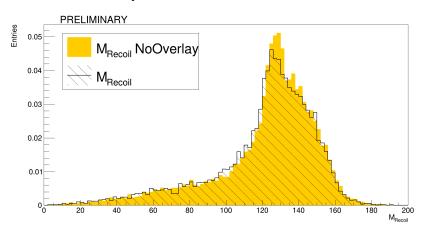




With this algorithm the optimal parameters have been found to be R=1.0 and YCut=0.004 and an impact of less than 0.3~% from overlay in the Z reconstruction.



With this algorithm the optimal parameter is YCut = 0.004 and an impact of 0.35 % from overlay in the Z reconstruction.

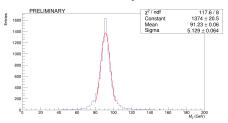


Conclusion

It have been shown the set of parameters that minimizes the overlay effect while efficiently reconstructing the Z mass and showing healthy recoil mass distributions.

A slightly better shape in the recoil mass is obtained from the ee_kt method that indicates that it is the algorithm that should be used.

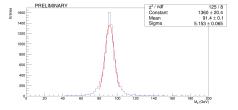
Overlay



No Overlay



Overlay



No Overlay

$$\epsilon = \frac{N_{\substack{\textit{signal}\\\textit{Signal}}}^{\textit{sel}}}{N_{\substack{\textit{signal}\\\textit{signal}}}^{\textit{tot}}} \; ; \; \textit{Purity} = \frac{N_{\substack{\textit{signal}\\\textit{events}}}^{\textit{sel}}}{N_{\substack{\textit{events}}}^{\textit{tot}}} \; \Longrightarrow \; \frac{\Delta \sigma}{\sigma} = \frac{\Delta \textit{Purity}}{\textit{Purity}} \oplus \frac{\Delta \epsilon}{\epsilon} \oplus \frac{\Delta \textit{L}}{\textit{L}}$$

And using as target a resolution of 3% from previous analysis this creates partial and optimal ranges of selection for the cuts. Cut in the Z Mass as an example:

