A brief Introduction
to Data Analysis procedures
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* Data analysis is a huge topic!

o Compact Binary Bursts from short-duration,
* | present a very limited SCope, Pl Coalescence (CBC) unknown sources
rEduced to: ;?0.5 | o ﬂ - ““M
- CBC data -

- Mainly in off-line data
processing for the GWTC.

Time (sec)

* For Low Latency information,
see for instance Cardiff 22 LVK

meeting slides: o e ™™ Credit: Amber Stuver

https://dcc.ligo.org/DocDB/0184/G2201664/003/LowlLatency Plenary.pdf

* Describe the basic methods/procedures, main properties & limitations.

* Many of them are automatized, but | won’t describe that either.


https://dcc.ligo.org/DocDB/0184/G2201664/003/LowLatency_Plenary.pdf

Main steps in data processing

Basic Reference:

Abbott et al. 2020
Class.Quan.Grav.N.37, 055002
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Data processing — Step 1: What is really measured?

raw data:

time-varying intensity of the
laser light measured at the
interferometer output

data used for analysis:
gravitational-wave
strain amplitude d(t)
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Data processing — Step 1: What is really measured?

raw data:

time-varying intensity of the
laser light measured at the
interferometer output
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data used for analysis:

gravitational-wave
strain amplitude d(t)

Most of the strain amplitude is simply
NOISE

ONLY Aprox. stationary

with a Gaussian component + glitches
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PSD of the noise is not known,
must be estimated from data
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PSD: Power Spectral Density

Record the time series of the detector
& environment state

ESSENTIAL TO CHARACTERIZE NOISE WELL

PSD needed for the matched filter

and PE



Data processing — Step 2: Check data quality

DetChar & DQ functions:

1.- Noise characterization and mitigation
- Find sources of noise and work in on-site mitigation
- Characterization of transient noise in the detectors
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1.- Noise characterization and mitigation

77222222227,
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Characterization of transient noise in the detectors

Find sources of noise and work in on-site mitigation
2.- Data Quality vetoes on strain time series

Select t when detectors are working without problems

Check data quality

Data processing — Step 2
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Data processing — Step 2: Check data quality
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Detector Characterization and Mitigation of Noise in
Ground-Based Gravitational-Wave Interferometers

Published in: Galaxies 10 (2022) 1, 12
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DetChar functions:

1.- Noise characterization and mitigation
- Find sources of noise and work in on-site mitigation
- Characterization of transient noise in the detectors

2.- Data Quality vetoes on strain time series
Select t when detectors are working without problems
3.- Event validation for candidates

found by the search
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Data processing — Step 2: Check data quality

DetChar functions:

1.- Noise characterization and mitigation
- Find sources of noise and work in on-site mitigation
- Characterization of transient noise in the detectors

2.- Data Quality vetoes on strain time series
| Select t when detectors are working without problems

3.- Event validation for candidates
found by the search

4.- Noise substraction: deglitching, gating..

20% of events, “Delicate” processes...
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Noise sustraction software: BayesWave
New glitch + signal modelling methods:

https://arxiv.org/abs/2205.13580 10
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Data processing — Step 3: Matched filtered searches

Signal identification:

Match filtering of d(t)

1.- A common bank of templates for
filtering is designed for each category:
BBH,NSBH & BNS.

2.- For each template h(t) w. param u

h(0) = Ap(t, ) cos ¢ + Aq(t, p) sin ¢
calculate the SNR time series

p(t,p) = \/(d p(.p)?+dla(Lp) —

w2 [ ()b (f) +a () o

Sa(f)

SNR quantifies the likelihood that the observed

data contains a GW signal.

3.- As result of filtering, we get a collection of triggers:

-

SEARCHES

Template
Matching

|

|

Whitening

(.

Make Triggers
(with False Alarm Rates,
Signal to Noise Ratio)

1

Identified Signals

~

‘GraceDB‘

1

Candidate identified!

(SNR)

Signal-t
oo N & o ®
w

chunk39

4 .- Cluster triggers in time in each detector, choose the
most representative, look for coincident triggers
in more than one detector to select signal candidates.
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Data processing — Step 3’: Event Ranking

's ™
SEARCHES

We get a HUGE amount
of triggers, most of them
caused by NOISE !

Need to solve 2 problems:

! 1 I )
1.- How do we rank the triggers 2.- How do we assign an statistical
to select the most “signal like” ones? significance to each candidate event
in terms of its ranking statistic?

- SNRis optimal ranking statistics in Gaussian Noise:
the higher the SNR the higher the likelihood that data contains a
signal

- But non-gaussian glitches produce HIGH SNR!

- A reweighted-SNR (using chi*2 methods) is used as RE

- Each pileline uses his own RE.



Data processing — Step 3: Event Ranking

1.- Assign a FAR value to the event =
the rate of background triggers with
ranking statistics value equal to or greater
than the RE of the event.

2.- The background distribution of the
ranking statistic is estimated in a data
driven way, by running the search over
time-shifted detector data, so that
coincidences become not physical.

3.- Plot the cumulative FAR distribution for
background and data, outstanding events
would clearly appear, as in GWCT1 plots

4.- The FARxTobs = estimate of the
probability of there being at least one
noise trigger with a FAR this low or lower
in the observed time.

Typically: FAR< 2/year for O3a/b runs
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Data processing — Step 3: Event Ranking

Problem:
Since FAR depends exponentially on the RE values, FAR values can differ by orders of magnitude among pipelines!

Name Inst. cWB GstLAL MBTA PyCBC-broad PyCBC-BBH

FAR SNR pastro FAR SNR pPastro FAR SNR pastro FAR SNR DPastro FAR SNR pPastro

(yr—h r—hH r—hH (yr—1) (yr—h
GW191103_012549 HL - - - - - - 27 9.0 0.13 4.8 9.3  0.77 0.46 9.3 0.94
GW191105.143521  HLV - - - 24 10.0 0.07 0.14 10.7 > 0.99 0.012 9.8 > 0.99 0.036 9.8 > 0.99
GW191109.010717  HL < 0.0011  15.6 > 0.99 0.0010 15.8 > 0.99 1.8 x 10~% 15.2 > 0.99 0.096 13.2 > 0.99 0.047 14.4 > 0.99
GW191113_071753 HLV - - - - - - 26 9.2 0.68 1.1 x 104 8.3 < 0.01 1.2x 10° 8.5 < 0.01
GW191126.115259 HL - - - 80 8.7 0.02 59 8.5 0.30 22 8.5 0.39 3.2 8.5 0.70
GW191127_050227 HLV - - - 0.25 10.3  0.49 1.2 9.8 0.73 20 9.5  0.47 4.1 8.7 0.74
GW191129.134029  HL - — — <1.0%x 1075 13.3 > 0.99 0.013 12.7 >0.99 < 2.6 X 10°° 12.9 > 0.99 < 2.4 X 1072 12.9 > 0.99
GW191204.110529 HL - - - 21 9.0 0.07 1.3 x 104 8.1 < 0.01 980 8.9 < 0.01 3.3 8.9 0.74
GW191204.171526 HL < 8.7 x 10~% 17.1 >0.99 <1.0x 102 156 >0.99 <1.0x 102 17.1 >0.99 < 1.4 x 10~° 16.9 > 0.99 < 1.2 X 102 16.9 > 0.99
GW191215.223052 HLV 0.12 9.8 0.95 <1.0x107% 10.9 > 0.99 0.22 10.8 > 0.99 0.0016 10.3 > 0.99 0.28 10.2 > 0.99
GW191216.213338  HV - - — <1.0x 1075 186 >0.99 9.3x10"% 17.9 > 0.99 0.0019 18.3 > 0.99 7.6 x 10~% 18.3 > 0.99
GW191219.163120 HLV - - - - - - - - - 4.0 8.9 0.82 - - -

From GWTC3




Data processing — Step 3: Event Ranking

1.- Assign a FAR value to the event =
the rate of background triggers with
ranking statistics value equal to or greater
than the RE of the event.

2.- The background distribution of the
ranking statistic is estimated in a data
driven way, by running the search over
time-shifted detector data, so that
coincidences become not physical.

3.- Plot the cumulative FAR distribution for
background and data, outstanding events
would clearly appear, as in GWCT1 plots

4.- The FARxTobs = estimate of the
probability of there being at least one
noise trigger with a FAR this low or lower
in the observed time.

Typically: FAR< 2/year for O3a/b runs
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éDoes Pastro have this risk?

* Present situation:

FAR eliminated as statistical criteria from
the catalogs after GWTC1.

For an evaluation of the FAR from
Gaussian Noise in GD Detectors, see our
recent paper: arxiv:2209.05475

* Since GWTC?2.1 Pastro introduced to

quantify the “probability of astrophysical

origin”.

Characteristics:

- Event goes to catalog if Pastro >0.5.

- Each pipeline computes its own.

- Based on prior knoledge of the
population properties and rates!



https://arxiv.org/abs/2209.05475
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