TREX-DM: a time projection chamber for low mass WIMPs detection

Hector Mirallas

mirallas@unizar.es

LIDINE - Madrid, September 2023

Laboratorio Subterráneo de Canfranc

Motivation and goals

Requirements to search for low mass WIMPs:

- Very low energy threshold (<1 $keV_{ee})$
- Light elements as target
- Radio-pure components to reduce background

TREX-DM (*TPC for Rare Event eXperiments - Dark Matter*) conceived to

- look for low mass WIMPs
- using a gas Time Projection Chamber holding
- ~20 liters of pressurized gas (flexible target: ~0.3 kg Ar, ~0.16 kg Ne at 10 bar)
- equipped with novel micromesh gas structures (Micromegas) readouts
- at the Canfranc Underground Laboratory (LSC) in Spain

Micromegas technology as readout plane

- Important advantages for rare events detection:
 - Topological information: to discriminate backgrounds from expected signal
 - Low intrinsic radioactivity: made of kapton and copper, potentially very clean
 - Scaling-up

Micromegas technology as readout plane

The largest surface (~25x25 cm²) ever produced with the *Microbulk* technology.

- Two planes (both end-caps) manufactured at CERN: 256 X strips, 256 Y strips, ~1 mm pitch
- Flat cables take the strips signals out the chamber.
- FaceToFace: A custom made radio-pure connections

Circuit 2

Copper base

Circuit 1

Vessel & gas system

Vessel:

- Designed to operate safely at 10 bar, **certified** as pressure equipment before installation at LSC
- Vessel pieces cleaned with nitric acid and demineralized water and passivated with citric acid

Gas system:

• Consisting of recirculation part + purification branch + gas recovery system (for depleted Ar)

Shielding

- 5 cm copper + 20 cm lead
- DAQ electronics outside the shielding
- N₂ or Rn-free air is flushed into the plastic cover
- Neutron shielding foreseen: polyethylene ceiling + water tanks

Readout electronics

- **AGET-based system**: **self-trigger**, allowing to trigger the acquisition from the strips signals
- Two Front End Cards (FEC), with 4 AGET chips each, read out the 2 x 256 channels of each micromegas detector. Each FEC is connected to one Feminos card (FPGA)
- Employing more than one FEC-Feminos requires the use of a synchronization board (Trigger Clock Module, TCM). The TCM distributes a common 100 MHz reference clock and the trigger to all the FECs

Detector chronology

2019-2021 period:

- Issues with leak currents and connectivity.
- Initial background level 2 orders of magnitude higher than background model → reduced to 1 order
- Restrictions due to the COVID-19 mainly in 2020.
- 4 interventions in clean room to repair connectivity, leak currents and to try to reduce surface contamination.
- Energy Threshold achieved ~ 1.5 KeV_{ee} .

scenario	energy thr (eV _{ee})	backgr level (dru)	isobut (%)	time exposu (year)
AAr1-400	400	10	1	1
AAr1	50	10	1	1
AAr10	50	10	10	1
BAr10	50	1	10	1
CAr10	50	0.1	10	10
CNe10	50	0.1	10	10

Main challenges:

- Energy Threshold reduction
- Background level reduction
- Gas sensitivity increase
- Detector stability

scenario	energy thr (eV _{ee})	backgr level (dru)	isobut (%)	time exposu (year)
AAr1-400	400	10	1	1
AAr1	50	10	1	1
AAr10	50	10	10	1
BAr10	50	1	10	1
CAr10	50	0.1	10	10
CNe10	50	0.1	10	10

2019-2021 Energy Threshold ~ 1.5 KeV_{ee} limited by **noise**, Micromegas **gain** and **trigger efficiency** for low energy events

Combined GEM-MM system: 10-100 pre-amplification factor

Hector Mirallas. LIDINE – Madrid, September 2023

Main challenges:

- Energy Threshold reduction
- Background level reduction
- Gas sensitivity increase
- Detector stability

scenario	energy thr (eV _{ee})	backgr level (dru)	isobut (%)	time exposu (year)
AAr1-400	400	10	1	1
AAr1	50	10	1	1
AAr10	50	10	10	1
BAr10	50	1	10	1
CAr10	50	0.1	10	10
CNe10	50	0.1	10	10

2019-2021 Background Level ~ 80 dru dominated by pieces contamination with radon progeny

AlphaCAMM: screening alpha surface contamination \rightarrow 100 nBq-cm⁻²

Main challenges:

- Energy Threshold reduction
- Background level reduction
- Gas sensitivity increase
- Detector stability

s	cenario	energy thr (eV _{ee})	backgr level (dru)	isobut (%)	time exposu (year)
AA	\r1-400	400	10	1	1
	AAr1	50	10	1	1
/	Ar10	50	10	10	1
E	3Ar10	50	1	10	1
(CAr10	50	0.1	10	10
C	CNe10	50	0.1	10	10

Main challenges:

- Energy Threshold reduction
- Background level reduction
- Gas sensitivity increase
- Detector stability

scenario	energy thr	backgr level (dru)	isobut (%)	time exposu (vear)
AAr1 400	400	10	1	1
AAT1-400	400	10	1	T
AAr1	50	10	1	1
AAr10	50	10	10	1
BAr10	50	1	10	1
CAr10	50	0.1	10	10
CNe10	50	0.1	10	10

New Micromegas already installed. Several issues addressed:

- Connection problems (leak currents [nA] between pads in the footprints & channel loss)
- leak currents between the tracks in the own Micromegas circuit.
- Leak currents between the strips in the active area.

Gas quality

- Outgassing (pumping for days/weeks)
- Tightness (10⁻⁶ mbar*l/s Helium test)
 → Minimizing retro-diffusion.
- Virtual leaks (careful design & assembling)

Noise stabilization

- Robust connections
- Screening with aluminum foil & dedicated grounding
- Limitation of devices connected in the laboratory

scenario	energy thr (eV _{ee})	backgr level (dru)	isobut (%)	time exposu (year)
AAr1-400	400	10	1	1
AAr1	50	10	1	1
AAr10	50	10	10	1
BAr10	50	1	10	1
CAr10	50	0.1	10	10
CNe10	50	0.1	10	10

R&D: Riveting & Distressing every time a problem is solved a new one appears

ADDITIONAL MATERIAL

Micromegas technology as readout plane

- ✓ New Microbulk Micromegas readouts: the largest surface (~25x25 cm²) ever produced with this technology.
 - Two planes manufactured at CERN and first installed at the Zaragoza set-up in September, 2017. 256 X strips, 256 Y strips, ~1 mm pitch
 - Flat cables take out signals from strips and connect to the interface cards out of the vessel.
 - Connections at both sides of flat cables made now by special silicone-based connectors (Zebra Gold 8000C from Fujipoly) checked to be more radiopure.

- Micromegas are consolidated readout structures: simple, high granularity, large surfaces
- Different technologies:
- Classical (CAST, COMPASS, ATLAS, ...)
- Bulk (T2K, nTOF, MIMAC, …)
- **Microbulk**: more homogeneous and radio-pure (CAST, nTOF, PANDAX-III, ...)

Challenges: Detector stability

New Micromegas already installed. Solved:

- Connection problems (leak currents [nA] between pads in the footprints & channel loss)
- Leak currents between the tracks in the own Micromegas circuit.
- Leak currents between the strips in the active area.

Parámetro	MM v1	MM v2
Distancia mínima entre canales (um)	75	500
Distancia mínima entre vías de canal y tierra (um)	200	4000
Número de lengüetas (ud)	2	4
Distancia entre pads en la fuella del conector (um)	150 (fujipoly)	4000 (FtF)
Distancia de amplificación (um)	50	50
Distancia entre strips en el área activa (um)	50	100
Patrón de agujeros (D-P) (um)	50 - 100	60 - 110

Table 8.1: Comparación de los parámetros de diseño entre la Micromegas v
1 (instalada en TREXDM en 2018) y la Micromegas v2 (instalada en TREXDM en 2022).

Challenges: Detector stability

New Micromegas already installed. Partially solved:

- Connection problems (leak currents [nA] between pads in the footprints & channel loss)
- leak currents between the tracks in the own Micromegas circuit.
- Leak currents between the strips in the active area.

Gas quality

- Outgassing (pumping for days/weeks)
- Tightness (10⁻⁶ mbar*l/s Helium test) → Minimizing retro-diffusion.
- Virtual leaks (careful design & assembling)

Noise stabilization

- Robust connections
- Ad-hoc aluminum foil installation & grounded copper wires
- Control of devices connected in the laboratory

Parámetro	MM v1	MM v2
Distancia mínima entre canales (um)	75	500
Distancia mínima entre vías de canal y tierra (um)	200	4000
Número de lengüetas (ud)	2	4
Distancia entre pads en la fuella del conector (um)	150 (fujipoly)	4000 (FtF)
Distancia de amplificación (um)	50	50
Distancia entre strips en el área activa (um)	50	100
Patrón de agujeros (D-P) (um)	50 - 100	60 - 110

Table 8.1: Comparación de los parámetros de diseño entre la Micromegas v1 (instalada en TREXDM en 2018) y la Micromegas v2 (instalada en TREXDM en 2022).

Challenges: Background level reduction

Main challenges in radio-purity of materials:

- Search of clean commercial materials. Large screening programs
- Synthesize clean materials.
- Control of processes in companies
- Storage in controlled environments

2012 JINST 7 P04007

Figure 6. Dependence of the absolute gain with the amplification field for two microbulk detectors with gaps of 50 (left) and 25 μ m (right) in argon-isobutane mixtures. The maximum gain of each curve was obtained just before the spark limit. The percentage of each series corresponds to the isobutane concentration.

Figure 7. Dependence of the energy resolution with the absolute gain for two detectors of 50 (left) and $25 \,\mu$ m-thickness-gap (right) in argon-isobutane mixtures. The maximum gain of each curve was obtained just before the spark limit. The percentage of each series corresponds to the isobutane concentration.

Prospects & Planning

1. A planning is never fulfilled and people is frustrated

- 2. First though \rightarrow very optimistic Second though \rightarrow optimistic Third???
- 3. For execution, the most realistic planning. Team people opinion

Discussed and agreed One person in charge Updated frequently.

t_{task} x 3

 \bigcirc

 \bigcirc

 \cap

 \bigcirc

O 1 · · · O

0....0

0 0

0 · · · 0

01...0

OO

23

Figure 8.6: Patrón de agujeros en la mesh superpuesto a la geometría de los pixels/strips. • Izquierda: primera Micromegas instalada en TREXDM con 50 um de diámetro de agujero, 100 um de separación entre centros y 50 um de separación entre pixeles. • Derecha: nueva Micromegas con 60 um de diámetro de agujero, 110 um de separación entre centros y 100 um de separación entre pixeles.

Figure 8.7: Simulación del campo eléctrico próximo a la mesh para la Micromegas D60P120IP260. Condiciones de simulación: 3 bar, 380 V en la mesh y un campo de deriva de 150 V/cm*bar. Se observa la zona muerta entre píxeles. Es necesario aclarar que por simplificación no se han añadido más agujeros de amplificación ni a la derecha ni a la izquierda de la imagen, ya que el objetivo era cuantificar la pérdida de electrones primarios en la zona entre píxeles.

Pressure	Mesh	Eficency	Eficency	Eficency
(bar)	Voltage	D50P100IP240	D60P120IP260	D60P110IP290
1.5	350	88%	84%	76%
3	350	76%	73%	65%
4	350	74%	70%	63%
6	350	69%	65%	58%
8	350	66%	63%	56%
10	350	64%	60%	54%

Table 8.2: Eficiencia en la recolección de electrones primarios para tres patrones diferentes con diferentes distancias entre agujeros de píxeles contiguos (IP) de 240 um, 260 um y 290 um. En la figura 8.6 pueden verse dos de estos tres patrones, con IP de 240 y 290 um. Estaría bien volver a hacer el cálculo de las eficiencias con mejor precisión y hacer un gráfico lineal con barras de error

