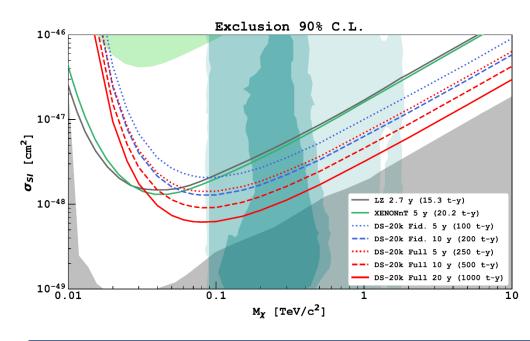
Study of cosmogenic activation above ground of Ar for DarkSide-20k

- GADMC and DarkSide-20k
- Methodology: flux, cross section
- Isotopes
- Production rates
- Activity and counting rates

LIDINE 2023 Light Detection In Noble Elements 20-22 Sep 2023 Madrid

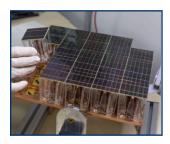
Susana Cebrián <u>scebrian@unizar.es</u> on behalf of the DarkSide-20k collaboration 20th September 2023



GADMC

Global Argon Dark Matter Collaboration (GADMC):

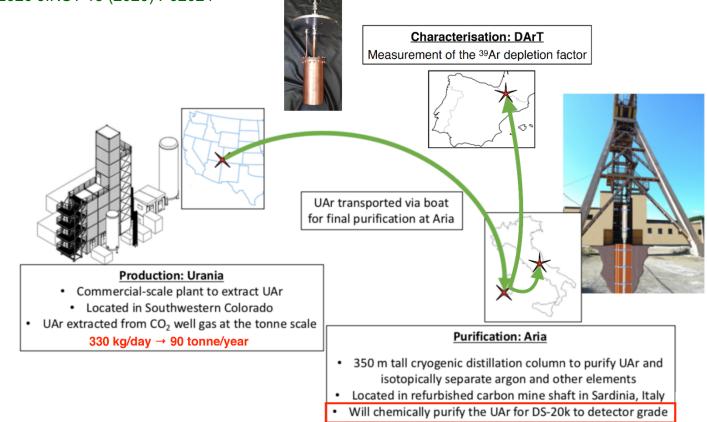
joining ArDM, DarkSide-50, DEAP-3600, and MiniCLEAN to operate LAr TPCs reaching the scale of **multi-ton** detectors to push the sensitivity for WIMP detection down to the neutrino fog



DarkSide-20k: 20 t (fiducial) at Gran Sasso, starting in 2027 DarkSide-LowMass: 1 t (fiducial), S2 only to lower threshold \rightarrow more ultrapure Ar needed P. Agnes et al, Phys. Rev. D 107 (2023) 112006 ARGO: ~360 t, at SNOLAB

Program:

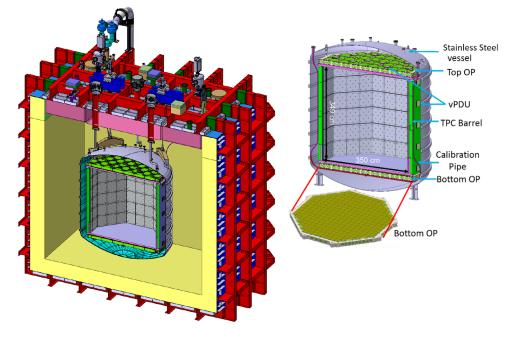
- Development of custom-designed SiPMs
- Design of active vetos to reject backgrounds
- Procurement of large amounts of radiopure underground Ar (UAr)



GADMC: UAr journey

Procurement of Iow-radioactivity UAr

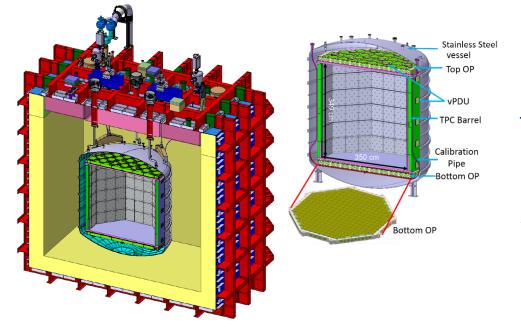
- **Urania:** extraction from CO₂ wells in Colorado (as DarkSide-50)
- Aria: purification in a criogenic distillation column in Sardinia P. Agnes et al, Eur. Phys. J. C 81 (2021) 359; Eur. Phys. J. C 83 (2023) 453
- **DArT:** quantification of ³⁹**Ar** in a chamber in the ArDM detector in Canfranc


C.E. Aalseth et al, 2020 JINST 15 (2020) P02024

DarkSide-20k

Dual-phase TPC read by **SiPMs** with 3D space reconstruction capability Filled and surrounded by **UAr**: 99.2 t required, 51.1 t inside TPC, **20.2 t** fiducial mass

- **TPC:** Gd-PMMA vessel to moderate and capture neutrons
- Inner veto: stainless steel vessel
- Outer veto: 700 t of Atmospheric Argon, ProtoDUNE-like membrane cryostat


Goal: <0.1 events in 200 t·y

- ✓ Very efficient discrimination between ER and NR, thanks to PSD and S1/S2
- Veto capabilities for muons and neutrons Paolo Franchini talk, Friday morning

DarkSide-20k

Dual-phase TPC read by **SiPMs** with 3D space reconstruction capability Filled and surrounded by **UAr**: 99.2 t required, 51.1 t inside TPC, **20.2 t** fiducial mass

- **TPC:** Gd-PMMA vessel to moderate and capture neutrons
- Inner veto: stainless steel vessel
- Outer veto: 700 t of Atmospheric Argon, ProtoDUNE-like membrane cryostat

Goal: <0.1 events in 200 t·y

- ✓ Very efficient discrimination between ER and NR, thanks to PSD and S1/S2
- Veto capabilities for muons and neutrons
 Paolo Franchini talk, Friday morning

But beta/gamma background from primordial or cosmogenic radioactivity must be analyzed due to acceptance losses for ER+NR pile-up in TPC or accidental coincidences between TPC and Veto

Goal: to determine if **activity induced by exposure to cosmic rays** during fabrication, transport and storage of components could be an issue in order to identify limits on the surface residency time and assess the necessity of taking some steps:

- Storing materials underground
- Avoiding flights
- Using shields against cosmic rays

Goal: to determine if activity induced by exposure to cosmic rays during fabrication, transport and storage of components could be an issue in order to identify limits on the surface residency time and assess the necessity of taking some steps:

- Storing materials underground
- Avoiding flights
- Using shields against cosmic rays
- 1. To know the **production rates** *R* of relevant isotopes in the targets, from
 - Scarce experimental data from irradiation/controlled exposure experiments
 - Calculations from production cross sections and cosmic ray spectrum:

$$R = N_t \int \sigma(E) \phi(E) dE$$

 N_t = number of target nuclei ϕ = flux of cosmic rays σ = production cross section E = particle energy

Goal: to determine if activity induced by exposure to cosmic rays during fabrication, transport and storage of components could be an issue in order to identify limits on the surface residency time and assess the necessity of taking some steps:

- Storing materials underground
- Avoiding flights
- Using shields against cosmic rays

1. To know the **production rates** *R* of relevant isotopes in the targets, from

- Scarce experimental data from irradiation/controlled exposure experiments
- Calculations from production cross sections and cosmic ray spectrum:

ſ	N_t = number of target nuclei	
$R = N_t \int \sigma(E)\phi(E)dE$	ϕ = flux of cosmic rays	
J	σ = production cross section	
	<i>E</i> = particle energy	

2. To estimate the **induced activity A** knowing the exposure history to cosmic rays

$$A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$$

t_{exp} = exposure time
t_{cool} = cooling time underground

Goal: to determine if activity induced by exposure to cosmic rays during fabrication, transport and storage of components could be an issue in order to identify limits on the surface residency time and assess the necessity of taking some steps:

- Storing materials underground
- Avoiding flights
- Using shields against cosmic rays

1. To know the **production rates** *R* of relevant isotopes in the targets, from

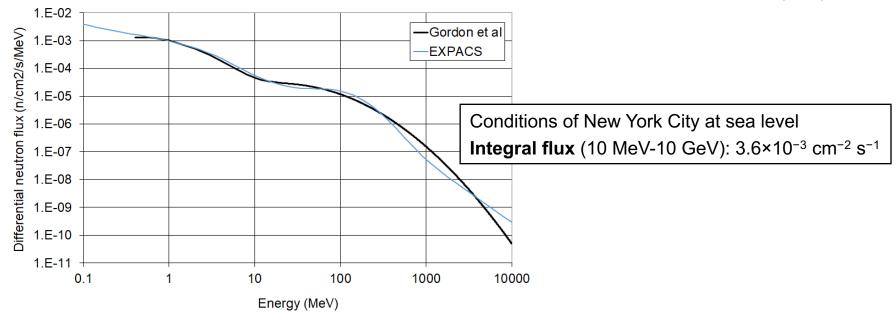
- Scarce experimental data from irradiation/controlled exposure experiments
- Calculations from production cross sections and cosmic ray spectrum:

N_t = number of target nuclei
ϕ = flux of cosmic rays
σ = production cross section
<i>E</i> = particle energy

2. To estimate the **induced activity A** knowing the exposure history to cosmic rays

$$A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool}) \qquad \qquad \mathbf{t_{exp}} = exposure time \\ \mathbf{t_{cool}} = cooling time underground$$

3. To compute the **background rate** generated by Monte Carlo simulation: G4DS

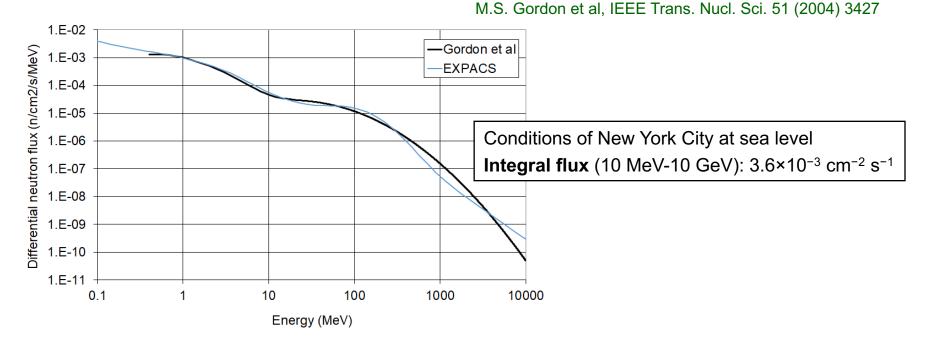

• Flux of cosmic rays

At the Earth's surface nuclide production is dominated by **neutrons** because of the absorption of charged particles in the atmosphere

Flux of cosmic rays

At the Earth's surface nuclide production is dominated by **neutrons** because of the absorption of charged particles in the atmosphere

A parametrization based on a set of measurements of cosmic neutrons on the ground across the US considered



M.S. Gordon et al, IEEE Trans. Nucl. Sci. 51 (2004) 3427

Flux of cosmic rays

At the Earth's surface nuclide production is dominated by **neutrons** because of the absorption of charged particles in the atmosphere

A parametrization based on a set of measurements of cosmic neutrons on the ground across the US considered

As it depends on altitude and geomagnetic rigidity, **correction factors** must be applied to the parametrization

Production cross sections

Select the best description of the excitation function $\sigma(E)$ by nucleons from

Production cross sections

Select the best description of the excitation function $\sigma(E)$ by nucleons from

- **Experimental data**: from beam experiments

EXFOR database: typically few data for neutrons

Production cross sections

Select the best description of the excitation function $\sigma(E)$ by nucleons from

- **Experimental data**: from beam experiments EXFOR database: typically few data for neutrons
- Semiempirical formulae (Silberberg&Tsao equations): targets A ≥3, products A ≥ 6 and E>100 MeV

COSMO, YIELDX, ACTIVIA codes

Production cross sections

Select the best description of the excitation function $\sigma(E)$ by nucleons from

- Experimental data: from beam experiments EXFOR database: typically few data for neutrons
- Semiempirical formulae (Silberberg&Tsao equations): targets A ≥3, products A ≥ 6 and E>100 MeV

COSMO, YIELDX, ACTIVIA codes

- Monte Carlo simulation: libraries

TENDL (TALYS-based Evaluated Nuclear Data Library)

- Using the TALYS code
- For neutrons and protons up to 200 MeV

Production cross sections

Select the best description of the excitation function $\sigma(E)$ by nucleons from

- Experimental data: from beam experiments EXFOR database: typically few data for neutrons
- Semiempirical formulae (Silberberg&Tsao equations): targets A ≥3, products A ≥ 6 and E>100 MeV

COSMO, YIELDX, ACTIVIA codes

- Monte Carlo simulation: libraries

TENDL (TALYS-based Evaluated Nuclear Data Library)

- Using the TALYS code
- For neutrons and protons up to 200 MeV

HEAD-2009 (High Energy Activation Data) library: only for Z≥12

- Using a selection of models and codes (CEM, CASCADE/INPE, MCNP, ...) dictated by an extensive comparison with EXFOR data.
- For protons from 150 MeV to 1 GeV

Production cross sections

Select the best description of the excitation function $\sigma(E)$ by nucleons from

- Experimental data: from beam experiments EXFOR database: typically few data for neutrons
- Semiempirical formulae (Silberberg&Tsao equations): targets A ≥3, products A ≥ 6 and E>100 MeV

COSMO, YIELDX, ACTIVIA codes

- Monte Carlo simulation: libraries

TENDL (TALYS-based Evaluated Nuclear Data Library)

- Using the TALYS code
- For neutrons and protons up to 200 MeV

HEAD-2009 (High Energy Activation Data) library: only for Z≥12

- Using a selection of models and codes (CEM, CASCADE/INPE, MCNP, ...) dictated by an extensive comparison with EXFOR data.
- For protons from 150 MeV to 1 GeV

JENDL (Japanese Evaluated Nuclear Data Library)

- Using GNASH code
- For neutrons and protons up to 200 MeV, from 20 MeV to 3 GeV in High Energy File

Relevant cosmogenic products

 $^{39}\text{Ar:}\ \beta^{-}$ emitter with Q=565 keV, T_{1/2}=269 y mainly produced by $\ ^{40}Ar(n,2n)^{39}Ar$ Measured activity in

- Atmospheric Ar: ~1 Bq/kg (WARP, ArDM, DEAP)
- **Underground Ar:** (0.73±0.11) mBq/kg (DarkSide-50)

Relevant cosmogenic products

 $^{39}\text{Ar:}\ \beta^{-}$ emitter with Q=565 keV, T_{1/2}=269 y mainly produced by $\ ^{40}Ar(n,2n)^{39}Ar$ Measured activity in

- Atmospheric Ar: ~1 Bq/kg (WARP, ArDM, DEAP)
- Underground Ar: (0.73±0.11) mBq/kg (DarkSide-50)

³⁷Ar: EC decay, $E_{e,K \text{ shell}}$ =2.8 keV, $T_{1/2}$ =35.02 d mainly produced by ${}^{40}Ar(n,4n){}^{37}Ar$ Observed in early data of DarkSide-50 Iftikhar Ahmad talk, Thursday morning

Relevant cosmogenic products

 $^{39}\text{Ar:}\ \beta^{-}$ emitter with Q=565 keV, T_{1/2}=269 y mainly produced by $\ ^{40}Ar(n,2n)^{39}Ar$ Measured activity in

- Atmospheric Ar: ~1 Bq/kg (WARP, ArDM, DEAP)
- Underground Ar: (0.73±0.11) mBq/kg (DarkSide-50)

³⁷Ar: EC decay, $E_{e,K \text{ shell}}$ =2.8 keV, $T_{1/2}$ =35.02 d mainly produced by ${}^{40}Ar(n,4n){}^{37}Ar$ Observed in early data of DarkSide-50 Iftikhar Ahmad talk, Thursday morning

⁴²Ar: β⁻ emitter, Q=599 keV, T_{1/2}=32.9 y producing ⁴²K (β⁻ emitter, Q=3525 keV, T_{1/2}=12.36 h) → potential background for neutrinoless double beta decay

In Atm Ar: DBA: $92^{+22}_{-46} \mu$ Bq/kg, GERDA: 50-100 μ Bq/kg, DEAP (40.4±0.5.9) μ Bq/kg Production mechanisms: two-step neutron capture and 40 Ar (α ,2p) 42 Ar

Relevant cosmogenic products

 $^{39}\text{Ar:}\ \beta^{-}$ emitter with Q=565 keV, T_{1/2}=269 y mainly produced by $\ ^{40}Ar(n,2n)^{39}Ar$ Measured activity in

- Atmospheric Ar: ~1 Bq/kg (WARP, ArDM, DEAP)
- Underground Ar: (0.73±0.11) mBq/kg (DarkSide-50)

³⁷Ar: EC decay, E_{e,K shell}=2.8 keV, T_{1/2}=35.02 d mainly produced by ${}^{40}Ar(n,4n){}^{37}Ar$ Observed in early data of DarkSide-50 Iftikhar Ahmad talk, Thursday morning

⁴²Ar: β⁻ emitter, Q=599 keV, T_{1/2}=32.9 y producing ⁴²K (β⁻ emitter, Q=3525 keV, T_{1/2}=12.36 h) → potential background for neutrinoless double beta decay

In Atm Ar: DBA: $92^{+22}_{-46} \mu$ Bq/kg, GERDA: 50-100 μ Bq/kg, DEAP (40.4±0.5.9) μ Bq/kg Production mechanisms: two-step neutron capture and 40 Ar (α ,2p) 42 Ar

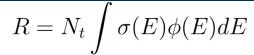
³**H**: $β^-$ emitter with Q=18.6 keV, **T**_{1/2}=12.3 y

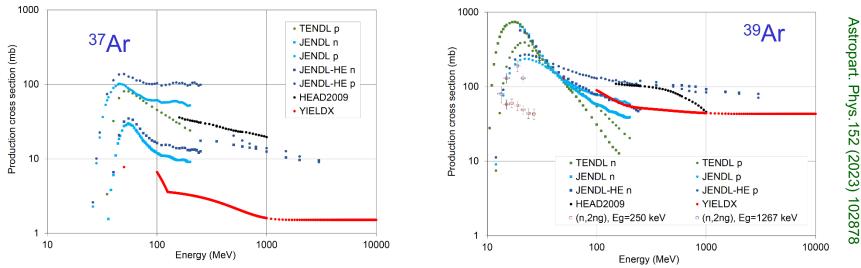
- Quantified yields in Ge detectors (EDELWEISS, CDMSlite) and observed hints in Nal(TI) crystals (ANAIS, COSINE)
- Purification systems for LAr should remove all non-noble radionuclides, as also assumed in LXe, but tritium proposed as a possible explanation for the XENON1T excess

- Production rates R (sea level): available information
- First <u>measurement</u> for ³⁹Ar and ³⁷Ar in an irradiation experiment at Los Alamos (LANSCE) with a neutron beam, quantifying products with a proportional counter at PNNL + calculations at sea level from alternate mechanisms

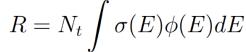
Reaction	Estimated ³⁹ Ar production rate [atoms/(kg _{Ar} day)]	Fraction of total AAr (%)	Reaction	Estimated ³⁷ Ar production rate [atoms/(kg _{Ar} day)]
40 Ar (n, 2n) ³⁹ Ar+	759 ± 128	72.3	40 Ar (n, 4n) ³⁷ Ar	51.0 ± 7.4
40 Ar(n, d) ³⁹ Cl			40 Ar (γ , 3n) ³⁷ Ar	3.5 ± 0.7
40 Ar (μ , n) 39 Cl	172 ± 26	16.4	40 Ar (p, p3n) ³⁷ Ar	1.3 ± 0.4
40 Ar (γ , n) ³⁹ Ar 40 Ar (γ , p) ³⁹ Cl	$\begin{array}{c} 89\pm19\\ 23.8\pm8.7\end{array}$	8.5 2.3	36 Ar(n, γ) ³⁷ Ar	0.9 ± 0.3 (UAr) 36 ± 11 (AAr)
⁴⁰ Ar (p, 2p) ³⁹ Cl ⁴⁰ Ar (p, pn) ³⁹ Ar	< 0.1 3.6 ± 2.2	<0.01 0.3	38 Ar(n, 2n) ³⁷ Ar+ 38 Ar(γ , n) ³⁷ Ar+	<0.05 (UAr)
38 Ar(n, γ) 39 Ar	≪ 0.1 (UAr)	_	38 Ar(p, pn) ³⁷ Ar	0.43 ± 0.05 (AAr)
	1.1 ± 0.3 (AAr)	0.1	Total	$(56.7 \pm 7.5 (\text{UAr}))$
Total	1048 ± 133	100		92 ± 13 (AAr)

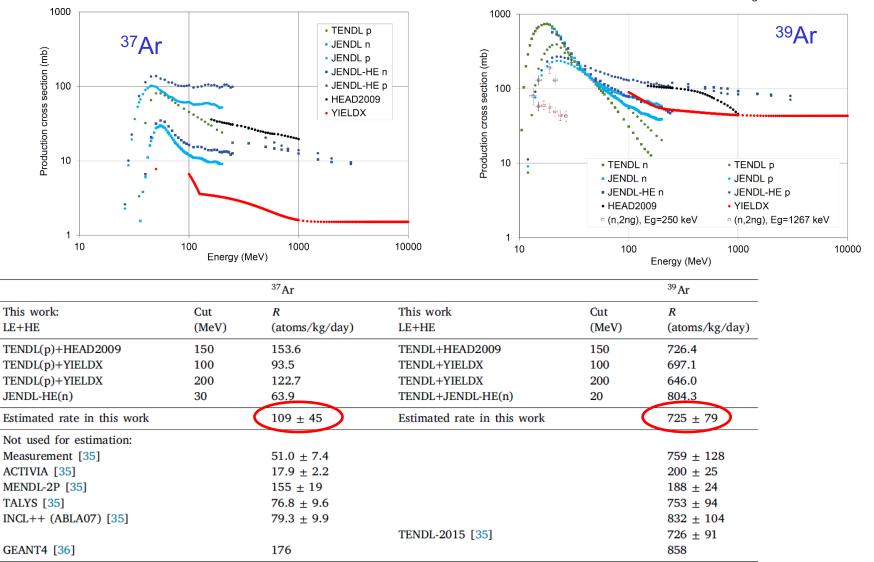
R. Saldanha et al, Phys. Rev. C 100 (2019) 024608


- Production rates R (sea level): available information
- First measurement for ³⁹Ar and ³⁷Ar in an irradiation experiment at Los Alamos (LANSCE) with a neutron beam, quantifying products with a proportional counter at PNNL + calculations at sea level from alternate mechanisms

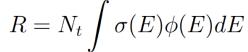

Reaction	Estimated ³⁹ Ar production rate [atoms/(kg _{Ar} day)]	Fraction of total AAr (%)	Reaction	Estimated ³⁷ Ar production rate [atoms/(kg _{Ar} day)]
$\frac{40}{40}$ Ar (n, 2n) ³⁹ Ar+	759 ± 128	72.3	40 Ar (n, 4n) ³⁷ Ar	51.0 ± 7.4
$^{40}Ar(n, d)^{39}Cl$			40 Ar (γ , 3n) ³⁷ Ar	3.5 ± 0.7
40 Ar (μ , n) 39 Cl	172 ± 26	16.4	40 Ar (p, p3n) ³⁷ Ar	1.3 ± 0.4
40 Ar $(\gamma, n)^{39}$ Ar 40 Ar $(\gamma, p)^{39}$ Cl	$\begin{array}{c} 89\pm19\\ 23.8\pm8.7\end{array}$	8.5 2.3	36 Ar(n, γ) ³⁷ Ar	0.9 ± 0.3 (UAr) 36 ± 11 (AAr)
⁴⁰ Ar (p, 2p) ³⁹ Cl ⁴⁰ Ar (p, pn) ³⁹ Ar	< 0.1 3.6 ± 2.2	<0.01 0.3	38 Ar(n, 2n) ³⁷ Ar+ 38 Ar(γ , n) ³⁷ Ar+	<0.05 (UAr)
38 Ar(n, γ) 39 Ar	≪ 0.1 (UAr)	_	38 Ar(p, pn) ³⁷ Ar	0.43 ± 0.05 (AAr)
	1.1 ± 0.3 (AAr)	0.1	Total	56.7 ± 7.5 (UAr)
Total	1048 ± 133	100		92 ± 13 (AAr)

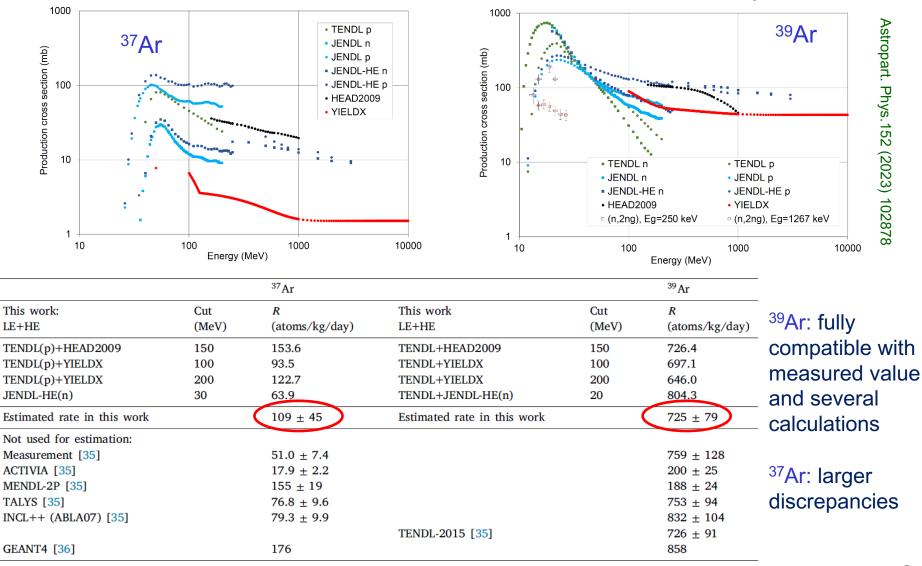
R. Saldanha et al, Phys. Rev. C 100 (2019) 024608


- Rates for ³⁷Ar, ³⁹Ar and ⁴²Ar from neutrons, protons and muons estimated by GEANT4 simulation too C. Zhang, D.M. Mei, Astropart. Phys. 142 (2022) 102733


Production rates R (sea level): new calculations

• **Production rates R** (sea level): new calculations

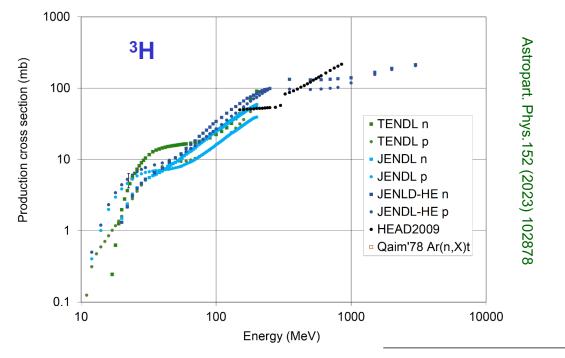


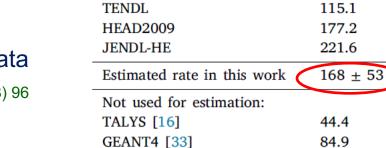


S. Cebrián, LIDINE2023

Astropart. Phys.152 (2023) 102878

• **Production rates R** (sea level): new calculations


S. Cebrián, LIDINE2023


• **Production rates R** (sea level): new calculations

$$R = N_t \int \sigma(E)\phi(E)dE$$

R (atoms/kg/day)

82.9

ACTIVIA [33]

Same approach but including more data

J. Amaré et al, Astropart. Phys.97 (2018) 96

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

1. Extraction and storage of UAr at Urania: 3 skids filled before transportation, exposures of 8, 16, 24 days

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

- **1. Extraction and storage of UAr at Urania:** 3 skids filled before transportation, exposures of 8, 16, 24 days
- 2. Trip from Urania to a shipping port (Houston): 7 days

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

- **1. Extraction and storage of UAr at Urania:** 3 skids filled before transportation, exposures of 8, 16, 24 days
- 2. Trip from Urania to a shipping port (Houston): 7 days
- 3. Trip overseas to Europe: 60 days at sea + 7 days from Cagliari to Aria

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

- 1. Extraction and storage of UAr at Urania: 3 skids filled before transportation, exposures of 8, 16, 24 days
- 2. Trip from Urania to a shipping port (Houston): 7 days
- 3. Trip overseas to Europe: 60 days at sea + 7 days from Cagliari to Aria

Steps 1-3 repeated 20 times

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

- **1. Extraction and storage of UAr at Urania:** 3 skids filled before transportation, exposures of 8, 16, 24 days
- 2. Trip from Urania to a shipping port (Houston): 7 days
- 3. Trip overseas to Europe: 60 days at sea + 7 days from Cagliari to Aria

Steps 1-3 repeated 20 times

4. Processing and storage of UAr at Aria: 2 runs each taking 60 days, if stored underground

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

- **1. Extraction and storage of UAr at Urania:** 3 skids filled before transportation, exposures of 8, 16, 24 days
- 2. Trip from Urania to a shipping port (Houston): 7 days
- 3. Trip overseas to Europe: 60 days at sea + 7 days from Cagliari to Aria

Steps 1-3 repeated 20 times

- 4. Processing and storage of UAr at Aria: 2 runs each taking 60 days, if stored underground
- 5. Trip from Aria to LNGS: 10 days, 10 trips with 12 t each

Activity A from measured production rates for ³⁷Ar, ³⁹Ar and estimated rate for ³H for realistic exposure conditions

 $A = R[1 - \exp(-\lambda t_{exp})] \exp(-\lambda t_{cool})$

Fix tentative **exposure times** and **places (altitude)** for shipping: URANIA \rightarrow ARIA \rightarrow LNGS Planned to produce **120 t**, shipped in high pressure gas cylinder (2 t per skid)

- **1. Extraction and storage of UAr at Urania:** 3 skids filled before transportation, exposures of 8, 16, 24 days
- 2. Trip from Urania to a shipping port (Houston): 7 days
- 3. Trip overseas to Europe: 60 days at sea + 7 days from Cagliari to Aria

Steps 1-3 repeated 20 times

- 4. Processing and storage of UAr at Aria: 2 runs each taking 60 days, if stored underground
- 5. Trip from Aria to LNGS: 10 days, 10 trips with 12 t each

Total time: from Urania to Aria 614 days

Activity

• Activity A in kg⁻¹ d⁻¹ for ³⁷Ar, ³⁹Ar and ³H

³⁹ Ar	Neutrons	Muons	Protons	γ rays	Total
R (atoms/kg/day) [35]	759 ± 128	172 ± 26	3.6 ± 2.2	112.8 ± 20.9	
Urania	0.551 ± 0.093	0.0483 ± 0.0073	0.0035 ± 0.0022	0.0127 ± 0.0024	0.616 ± 0.093
US	0.139 ± 0.024	0.0148 ± 0.0022	0.0009 ± 0.0005	0.0056 ± 0.0010	0.161 ± 0.024
Overseas	0.359 ± 0.061	0.081 ± 0.012	0.0017 ± 0.0010	0.053 ± 0.010	0.495 ± 0.063
Aria	0.321 ± 0.054	0.073 ± 0.011	0.0015 ± 0.0009	0.048 ± 0.0088	0.444 ± 0.056
Italy	0.0536 ± 0.0090	0.0121 ± 0.0018	0.0003 ± 0.0002	0.0080 ± 0.0015	0.0739 ± 0.0093
Final	1.42 ± 0.24	0.229 ± 0.035	0.0078 ± 0.0048	0.127 ± 0.024	1.79 ± 0.24
(%)	79.6	12.8	0.4	7.1	
³⁷ Ar	Neutrons	Thermal neutrons	Protons	γ rays	Total
R (atoms/kg/day) [35]	51 ± 7.4	0.9 ± 0.3	1.3 ± 0.4	3.5 ± 0.7	
Urania	87 ± 13	2.99 ± 0.92	0.93 ± 0.19	0.239 ± 0.080	91 ± 13
US	24.5 ± 3.6	0.81 ± 0.25	0.453 ± 0.091	0.116 ± 0.039	25.9 ± 3.6
Overseas	37.5 ± 5.4	0.95 ± 0.29	2.57 ± 0.51	0.66 ± 0.22	41.7 ± 5.5
Aria	35.5 ± 5.1	0.90 ± 0.28	2.43 ± 0.49	0.63 ± 0.21	39.4 ± 5.2
Italy	9.2 ± 1.3	0.234 ± 0.072	0.63 ± 0.13	0.162 ± 0.054	10.2 ± 1.3
Final	8.0 ± 1.2	0.209 ± 0.064	0.52 ± 0.10	0.135 ± 0.045	8.9 ± 1.2
(%)	90.3	2.3	5.9	1.5	

"Final" presents the sum from all exposure steps including properly decays.

Activity

• Activity A in kg⁻¹ d⁻¹ for ³⁷Ar, ³⁹Ar and ³H

Neutrons	Muons	Protons	γ rays	Total	
759 ± 128	172 ± 26	3.6 ± 2.2	112.8 ± 20.9		
0.551 ± 0.093	0.0483 ± 0.0073	0.0035 ± 0.0022	0.0127 ± 0.0024	0.616 ± 0.093	
0.139 ± 0.024	0.0148 ± 0.0022	0.0009 ± 0.0005	0.0056 ± 0.0010	0.161 ± 0.024	
0.359 ± 0.061	0.081 ± 0.012	0.0017 ± 0.0010	0.053 ± 0.010	0.495 ± 0.063	
0.321 ± 0.054	0.073 ± 0.011	0.0015 ± 0.0009	0.048 ± 0.0088	0.444 ± 0.056	
0.0536 ± 0.0090	0.0121 ± 0.0018	0.0003 ± 0.0002	0.0080 ± 0.0015	0.0739 ± 0.0093	
1.42 ± 0.24	0.229 ± 0.035	0.0078 ± 0.0048	0.127 ± 0.024	1.79 ± 0.24	
79.6	12.8	0.4	7.1		
Neutrons	Thermal neutrons	Protons	γ rays	Total	
51 ± 7.4	0.9 ± 0.3	1.3 ± 0.4	3.5 ± 0.7		
87 ± 13	2.99 ± 0.92	0.93 ± 0.19	0.239 ± 0.080	91 ± 13	
24.5 ± 3.6	0.81 ± 0.25	0.453 ± 0.091	0.116 ± 0.039	25.9 ± 3.6	
37.5 ± 5.4	0.95 ± 0.29	2.57 ± 0.51	0.66 ± 0.22	41.7 ± 5.5	
35.5 ± 5.1	0.90 ± 0.28	2.43 ± 0.49	0.63 ± 0.21	39.4 ± 5.2	
9.2 ± 1.3	0.234 ± 0.072	0.63 ± 0.13	0.162 ± 0.054	10.2 ± 1.3	
8.0 ± 1.2	0.209 ± 0.064	0.52 ± 0.10	0.135 ± 0.045	8.9 ± 1.2	
90.3	2.3	5.9	1.5		
	759 ± 128 0.551 ± 0.093 0.139 ± 0.024 0.359 ± 0.061 0.321 ± 0.054 0.0536 ± 0.0090 1.42 ± 0.24 79.6 Neutrons 51 ± 7.4 87 ± 13 24.5 ± 3.6 37.5 ± 5.4 35.5 ± 5.1 9.2 ± 1.3 8.0 ± 1.2	759 ± 128 172 ± 26 0.551 ± 0.093 0.0483 ± 0.0073 0.139 ± 0.024 0.0148 ± 0.0022 0.359 ± 0.061 0.081 ± 0.012 0.321 ± 0.054 0.073 ± 0.011 0.0536 ± 0.0090 0.0121 ± 0.0018 1.42 ± 0.24 0.229 ± 0.035 79.6 12.8 Neutrons 51 ± 7.4 0.9 ± 0.3 87 ± 13 2.99 ± 0.92 24.5 ± 3.6 0.81 ± 0.25 37.5 ± 5.4 0.95 ± 0.29 35.5 ± 5.1 0.90 ± 0.28 9.2 ± 1.3 0.234 ± 0.072 8.0 ± 1.2 0.209 ± 0.064	759 ± 128 172 ± 26 3.6 ± 2.2 0.551 ± 0.093 0.0483 ± 0.0073 0.0035 ± 0.0022 0.139 ± 0.024 0.0148 ± 0.0022 0.0009 ± 0.0005 0.359 ± 0.061 0.081 ± 0.012 0.0017 ± 0.0010 0.321 ± 0.054 0.073 ± 0.011 0.0015 ± 0.0009 0.0536 ± 0.0090 0.0121 ± 0.0018 0.0003 ± 0.0002 1.42 ± 0.24 0.229 ± 0.035 0.0078 ± 0.0048 79.6 12.8 0.4 NeutronsThermal neutronsProtons 51 ± 7.4 0.9 ± 0.3 1.3 ± 0.4 87 ± 13 2.99 ± 0.92 0.93 ± 0.19 24.5 ± 3.6 0.81 ± 0.25 0.453 ± 0.091 37.5 ± 5.4 0.95 ± 0.29 2.57 ± 0.51 35.5 ± 5.1 0.90 ± 0.28 2.43 ± 0.49 9.2 ± 1.3 0.234 ± 0.072 0.63 ± 0.13 8.0 ± 1.2 0.209 ± 0.064 0.52 ± 0.10	759 ± 128 172 ± 26 3.6 ± 2.2 112.8 ± 20.9 0.551 ± 0.093 0.0483 ± 0.0073 0.0035 ± 0.0022 0.0127 ± 0.0024 0.139 ± 0.024 0.0148 ± 0.0022 0.0009 ± 0.0005 0.0056 ± 0.0010 0.359 ± 0.061 0.081 ± 0.012 0.0017 ± 0.0010 0.053 ± 0.010 0.321 ± 0.054 0.073 ± 0.011 0.0015 ± 0.0009 0.048 ± 0.0088 0.0536 ± 0.0090 0.0121 ± 0.0018 0.0003 ± 0.0002 0.0080 ± 0.0015 1.42 ± 0.24 0.229 ± 0.035 0.0078 ± 0.0048 0.127 ± 0.024 79.6 12.8 0.4 7.1 NeutronsThermal neutronsProtons γ rays 51 ± 7.4 0.9 ± 0.3 1.3 ± 0.4 3.5 ± 0.7 87 ± 13 2.99 ± 0.92 0.93 ± 0.19 0.239 ± 0.080 24.5 ± 3.6 0.81 ± 0.25 0.453 ± 0.091 0.116 ± 0.039 37.5 ± 5.4 0.95 ± 0.29 2.57 ± 0.51 0.66 ± 0.22 35.5 ± 5.1 0.90 ± 0.28 2.43 ± 0.49 0.63 ± 0.21 9.2 ± 1.3 0.209 ± 0.064 0.52 ± 0.10 0.135 ± 0.045	

"Final" presents the sum from all exposure steps including properly decays.

Exposure at Urania produces largest contribution Neutrons give most of the yield

Activity

• Activity A in kg⁻¹ d⁻¹ for ³⁷Ar, ³⁹Ar and ³H

³⁹ Ar	Neutrons	Muons	Protons	γ rays	Total
R (atoms/kg/day) [35]	759 ± 128	172 ± 26	3.6 ± 2.2	112.8 ± 20.9	
Urania	0.551 ± 0.093	0.0483 ± 0.0073	0.0035 ± 0.0022	0.0127 ± 0.0024	0.616 ± 0.093
US	0.139 ± 0.024	0.0148 ± 0.0022	0.0009 ± 0.0005	0.0056 ± 0.0010	0.161 ± 0.024
Overseas	0.359 ± 0.061	0.081 ± 0.012	0.0017 ± 0.0010	0.053 ± 0.010	0.495 ± 0.063
Aria	0.321 ± 0.054	0.073 ± 0.011	0.0015 ± 0.0009	0.048 ± 0.0088	0.444 ± 0.056
Italy	0.0536 ± 0.0090	0.0121 ± 0.0018	0.0003 ± 0.0002	0.0080 ± 0.0015	0.0739 ± 0.0093
Final	1.42 ± 0.24	0.229 ± 0.035	0.0078 ± 0.0048	0.127 ± 0.024	1.79 ± 0.24
(%)	79.6	12.8	0.4	7.1	
³⁷ Ar	Neutrons	Thermal neutrons	Protons	γ rays	Total
R (atoms/kg/day) [35]	51 ± 7.4	0.9 ± 0.3	1.3 ± 0.4	3.5 ± 0.7	
Urania	87 ± 13	2.99 ± 0.92	0.93 ± 0.19	0.239 ± 0.080	91 ± 13
US	24.5 ± 3.6	0.81 ± 0.25	0.453 ± 0.091	0.116 ± 0.039	25.9 ± 3.6
Overseas	37.5 ± 5.4	0.95 ± 0.29	2.57 ± 0.51	0.66 ± 0.22	41.7 ± 5.5
Aria	35.5 ± 5.1	0.90 ± 0.28	2.43 ± 0.49	0.63 ± 0.21	39.4 ± 5.2
Italy	9.2 ± 1.3	0.234 ± 0.072	0.63 ± 0.13	0.162 ± 0.054	$\frac{10.2 \pm 1.3}{10.2 \pm 1.3}$
Final	8.0 ± 1.2	0.209 ± 0.064	0.52 ± 0.10	0.135 ± 0.045	8.9 ± 1.2
(%)	90.3	2.3	5.9	1.5	

applied

"Final" presents the sum from all exposure steps including properly decays.

Exposure at Urania produces largest contribution
Neutrons give most of the yield
If no purification

³ H	
R (atoms/kg/day)	168 ± 53
Urania	2.66 ± 0.84
US	0.67 ± 0.21
Overseas	1.73 ± 0.54
Aria	1.55 ± 0.49
Italy	0.259 ± 0.082
Final	6.5 ± 2.1
	1

Activity A when all UAr is in Gran Sasso and counting rate in DarkSide-20k

Isotope	Activity (µBq/kg)	TPC rate (Hz)	Veto rate (Hz)
³⁹ Ar	20.7 ± 2.8	1.03 ± 0.14	0.662 ± 0.090
³⁷ Ar	103 ± 14	5.15 ± 0.68	3.30 ± 0.43
³ H (1)	76 <u>+</u> 24	3.8 ± 1.2	2.42 ± 0.76
³ H (2)	2.97 ± 0.94	0.148 ± 0.047	0.095 ± 0.030

row (1) and (2) assume no purification and ideal purification at Aria

Activity A when all UAr is in Gran Sasso and counting rate in DarkSide-20k

Isotope	Activity (µBq/kg)	TPC rate (Hz)	Veto rate (Hz)
³⁹ Ar	20.7 ± 2.8	1.03 ± 0.14	0.662 ± 0.090
³⁷ Ar	103 ± 14	5.15 ± 0.68	3.30 ± 0.43
³ H (1)	76 ± 24	3.8 ± 1.2	2.42 ± 0.76
³ H (2)	2.97 ± 0.94	0.148 ± 0.047	0.095 ± 0.030

row (1) and (2) assume no purification and ideal purification at Aria

A residual level of 2.8% of quantified activity of ³⁹Ar in DarkSide-50 is obtained

Activity A when all UAr is in Gran Sasso and counting rate in DarkSide-20k

Isotope	Activity (µBq/kg)	TPC rate (Hz)	Veto rate (Hz)
³⁹ Ar	20.7 ± 2.8	1.03 ± 0.14	0.662 ± 0.090
³⁷ Ar	103 ± 14	5.15 ± 0.68	3.30 ± 0.43
³ H (1)	76 ± 24	3.8 ± 1.2	2.42 ± 0.76
³ H (2)	2.97 ± 0.94	0.148 ± 0.047	0.095 ± 0.030

row (1) and (2) assume no purification and ideal purification at Aria

A residual level of 2.8% of quantified activity of ³⁹Ar in DarkSide-50 is obtained

³⁷Ar will decay fast

Activity A when all UAr is in Gran Sasso and counting rate in DarkSide-20k

Isotope	Activity (µBq/kg)	TPC rate (Hz)	Veto rate (Hz)
³⁹ Ar	20.7 ± 2.8	1.03 ± 0.14	0.662 ± 0.090
³⁷ Ar	103 ± 14	5.15 ± 0.68	3.30 ± 0.43
³ H (1)	76 <u>+</u> 24	3.8 ± 1.2	2.42 ± 0.76
³ H (2)	2.97 ± 0.94	0.148 ± 0.047	0.095 ± 0.030

row (1) and (2) assume no purification and ideal purification at Aria

A residual level of 2.8% of quantified activity of ³⁹Ar in DarkSide-50 is obtained

³⁷Ar will decay fast

Purification reduces activity of ³H by a factor 25

Activity A when all UAr is in Gran Sasso and counting rate in DarkSide-20k

Isotope	Activity (µBq/kg)	TPC rate (Hz)	Veto rate (Hz)
³⁹ Ar	20.7 ± 2.8	1.03 ± 0.14	0.662 ± 0.090
³⁷ Ar	103 ± 14	5.15 ± 0.68	3.30 ± 0.43
³ H (1)	76 <u>+</u> 24	3.8 ± 1.2	2.42 ± 0.76
³ H (2)	2.97 ± 0.94	0.148 ± 0.047	0.095 ± 0.030

row (1) and (2) assume no purification and ideal purification at Aria

A residual level of 2.8% of quantified activity of ³⁹Ar in DarkSide-50 is obtained

³⁷Ar will decay fast

Purification reduces activity of ³H by a factor 25

G4DS simulation of γ/β emissions from the full set of detector components to estimate rates in the TPC and in the Veto from measured activities

γ: ~50 Hz in TPC, ~100 Hz in Veto
β: 36 Hz in TPC, 26 Hz in Veto

 Great effort underway in GADMC to procure radiopure UAr: extraction at Urania, purification at Aria and precise ³⁹Ar quantification in DArT at Canfranc

- Great effort underway in GADMC to procure radiopure UAr: extraction at Urania, purification at Aria and precise ³⁹Ar quantification in DArT at Canfranc
- DarkSide-20k at Gran Sasso: intense work to control backgrounds

- Great effort underway in GADMC to procure radiopure UAr: extraction at Urania, purification at Aria and precise ³⁹Ar quantification in DArT at Canfranc
- DarkSide-20k at Gran Sasso: intense work to control backgrounds
- Cosmogenic activation in LAr has been studied as a source of β/γ background to assess the contribution to counting rates and decide about exposure restrictions assuming conditions as realistic as possible

- Great effort underway in GADMC to procure radiopure UAr: extraction at Urania, purification at Aria and precise ³⁹Ar quantification in DArT at Canfranc
- DarkSide-20k at Gran Sasso: intense work to control backgrounds
- **Cosmogenic activation** in LAr has been studied as a source of β/γ **background** to assess the contribution to counting rates and decide about exposure restrictions assuming conditions as realistic as possible
 - Measured production rates of ³⁹Ar, ³⁷Ar assumed and a new estimate for ³H: R = (168 ± 53) kg⁻¹d⁻¹
 - ³⁹Ar: A=(20.7 ± 2.8) μBq/kg, 2.8% of measured DarkSide-50 activity
 - ³⁷Ar and ³H: not problematic thanks to short half-life and purification

- Great effort underway in GADMC to procure radiopure UAr: extraction at Urania, purification at Aria and precise ³⁹Ar quantification in DArT at Canfranc
- DarkSide-20k at Gran Sasso: intense work to control backgrounds
- **Cosmogenic activation** in LAr has been studied as a source of β/γ background to assess the contribution to counting rates and decide about exposure restrictions assuming conditions as realistic as possible
 - Measured production rates of ³⁹Ar, ³⁷Ar assumed and a new estimate for ³H: R = (168 ± 53) kg⁻¹d⁻¹
 - ³⁹Ar: A=(20.7 ± 2.8) μBq/kg, 2.8% of measured DarkSide-50 activity
 - ³⁷Ar and ³H: not problematic thanks to short half-life and purification

➡ tolerable induced activity in the assumed conditions

Study of cosmogenic activation above ground for the DarkSide-20k experiment, Astropart. Phys.152 (2023) 102878

- Great effort underway in GADMC to procure radiopure UAr: extraction at Urania, purification at Aria and precise ³⁹Ar quantification in DArT at Canfranc
- DarkSide-20k at Gran Sasso: intense work to control backgrounds
- **Cosmogenic activation** in LAr has been studied as a source of β/γ **background** to assess the contribution to counting rates and decide about exposure restrictions assuming conditions as realistic as possible
 - Measured production rates of ³⁹Ar, ³⁷Ar assumed and a new estimate for ³H: R = (168 ± 53) kg⁻¹d⁻¹
 - ³⁹Ar: A=(20.7 ± 2.8) μBq/kg, 2.8% of measured DarkSide-50 activity
 - ³⁷Ar and ³H: not problematic thanks to short half-life and purification
 - ➡ tolerable induced activity in the assumed conditions

Study of cosmogenic activation above ground for the DarkSide-20k experiment, Astropart. Phys.152 (2023) 102878

 Results useful to set exposure limitations for the large amounts of LAr necessary in future projects for dark matter (DarkSide-Low Mass, ARGO) and even for neutrino experiments (COHERENT, LEGEND-1000, DUNE)

Correction factors

Production rates R correction factors f for exposure at Colorado

Urania facilities: 2164 m

$$I_2 = I_1 \exp\left(\frac{A_1 - A_2}{L}\right),\tag{1}$$

where I_1 is the cascade flux at some altitude (pressure) A_1 , and I_2 is the flux at altitude A_2 , both altitudes being expressed in g/cm². To convert terrestrial altitudes to

J.F. Ziegler, IBM J. Res. Develop. 42 (1998) 117.

- Protons:
- Muons:

f=8.67 f=2.48 Table 3. Sea-level particle absorption lengths.

Particle	Length L (g/cm ²)		
Electrons	100		
Protons	110	\square	
Pions	113		
Neutrons	136		
Muons and muon capture	261		

 Neutrons: extrapolation for Urania location of deduced factors f due to altitude <u>and geomagnetic rigidity</u> at Denver and Leadville.

Location	Н	A	f	Relative I	Deduced f
	(ft)	(g/cm^2)	from $[47]$	to Urania	for Urania
Denver	5280	852.3	4.11	0.659	6.24
Leadville	10200	705.2	12.86	1.942	6.62
Urania	7100	795.5			6.43

Table 1

Cosmogenic activation rates of three argon isotopes: ${}^{37}Ar$, ${}^{39}Ar$ and ${}^{42}Ar$. The simulation results are also compared with the ones from measurements and estimations[56].

	^{37}Ar	^{39}Ar	^{42}Ar
	ŧ	$atoms/kg_{Ar}/day$	
Neutrons (this work)	176.01	857.73	4.60×10^{-3}
Neutrons (measurement[56])	51.0 ± 7.4	759 ± 128	-
Muons (this work)	2.40	52.27	1.57×10^{-4}
Muons (calculation[56])	-	172 ± 26	-
Protons (this work)	6.20	28.53	1.05×10^{-3}
Protons (calculation[56])	1.73 ± 0.35	3.6 ± 2.2	-
Total (this work)	184.61	938.53	5.81×10^{-3}
Total (Ref. $[56]$)	52.73 ± 7.75	934.6 ± 156.2	-

Table 2	
Cosmogenic activation rates of other long-lived isotope	es.

_	Isotope, Half Life	Neutron	Muon	Proton
		$\rm atoms/kg_{Ar}/day$		
_	^{3}H , 12.32y	3.00×10^{-4}	6.56×10^{-6}	1.05×10^{-4}
	$^{7}Be, 1.387 \times 10^{6}y$	3.43×10^{-3}	6.47×10^{-3}	9.62×10^{-3}
	$^{10}Be, 53.22d$	7.05×10^{-3}	$5.22 imes 10^{-3}$	1.10×10^{-2}
	$^{14}C, 5.703 \times 10^{3}y$	0.10	9.85×10^{-3}	4.56×10^{-2}
	$^{22}Na, 2.602y$	0.37	2.35×10^{-2}	9.92×10^{-2}
	$^{26}Al, 7.17\times 10^5y$	0.63	4.24×10^{-2}	0.12
	$3^{2}Si$, 153 y	7.00	0.14	0.47
	$^{32}P, 14.268d$	15.7	0.38	1.05
	$^{33}P, 25.3d$	22.5	0.42	1.32
	<mark>³⁵S</mark> , 87.37d	74.5	1.66	3.18
	^{36}Cl , $3.01 \times 10^5 y$	75.5	1.23	3.32
	${}^{40}K, 1.248 \times 10^9 y$	1.80	$5.86 imes 10^{-2}$	0.56
	$^{41}Ca, 9.94\times 10^4y$	$1.85 imes 10^{-3}$	1.02×10^{-4}	5.68×10^{-4}

C. Zhang, D.M. Mei, Astropart. Phys. 142 (2022) 102733

^{42}Ar

Production of ⁴²Ar in underground argon

Production mechanisms:

- Two-step neutron capture: high neutron flux required due to short half-life of ⁴¹Ar (1.8 h) → not possible underground
- (α ,2p) reaction: zero σ values <15 MeV (TALYS2017) \rightarrow not possible for α from radioactivity 40Ar (α ,2p) 42Ar
- Neutron reactions on Ca:

Isotope	Natural abundance (%)	Reaction	
43Ca	2.086	43Ca(n,2p)42Ar	Zero σ values <17 MeV (TALYS2017) \rightarrow not possible for fission or (α ,n) neutrons
44Ca	0.135	44Ca(n,n2p)42Ar	Zero σ values <23 MeV (TALYS2017) \rightarrow not possible for fission or (α ,n) neutrons

Precise estimate requires: neutron spectrum underground from other sources, Ca concentration in rock, emanation factor