

Spetalo: positron emission

tomography with liquid xenon

Nerea Salor Iguiñiz, LIDINE 2023 – Light Detection in Noble Elements September 20th - 22nd 2023 Madrid, Spain

fludeoxyglucose (18F)

fludeoxyglucose (18F)

fludeoxyglucose (18F)

Energy resolution:

True event Scatter event

Energy resolution:

Time resolution:

True event

Scatter event

Same probability in the line of response

Time resolution in the system

Xenon:

Xenon:

- Good scintillator: 68 photons/keV at 178nm

- Good scintillator: 68 photons/keV at 178nm
- Fast decay time: 2.2ns

- Good scintillator: 68 photons/keV at 178nm
- Fast decay time: 2.2ns
- Transparent to its own scintillation light

- Good scintillator: 68 photons/keV at 178nm
- Fast decay time: 2.2ns
- Transparent to its own scintillation light
- Continuous medium

- Good scintillator: 68 photons/keV at 178nm
- Fast decay time: 2.2ns
- Transparent to its own scintillation light
- Continuous medium
- Specific UV photosensors

- Good scintillator: 68 photons/keV at 178nm
- Fast decay time: 2.2ns
- Transparent to its own scintillation light
- Continuous medium
- Specific UV photosensors
- Liquefy xenon at -110°C

PETit: electronics

Hamamatsu VUV-sensitive S15779, $6x6mm^2$ area

PETit: electronics

Hamamatsu VUV-sensitive S15779, $6x6mm^2$ area

TOFPET2 ASIC from PETSYS

PETit: electronics

Hamamatsu VUV-sensitive S15779, $6x6mm^2$ area

First threshold (T1) : timestamp Second threshold (T2): charge

SATURATION:

- SiPM with 6162 microcells

- Monte carlo prediction: 5000 photoelectrons

PETit: results

Conclusions

- First prototype built and taking data
- Good energy resolution (still under study)
- Good time resolution (still under study)
- Future: test FBK SiPM, parameters that affect CTR, Teflon configurations

THANK YOU!

Back up: xenon

Two responses to the ionizing radiation: scintillation and ionization (anticorrelated)

- VUV scintillating photons emitted from one of the two lowest electronic excited states (singlet and triplet) to the ground state.

- In the absence of electric field, recombination also produces scintillation, at a later time.

Back up: devices brands

Hot getter from Sigma Technologies PS4 MT15 R2

Double diaphragm compressor KNF-N186.1.2SP.12 E

Vacuum pump: IDP-7 Dry Scroll Pump Cold head: Sumitono CH-110

Back up: detector sensitivity

Better:

- Longer detector

- Dense material (higher Z) -> less thickness

Back up: material comparison

	BGO	LSO	LYSO	LXe
Attenuation length 511keV (mm)	10	11.5	12	36
Yield (photons/keV)	9	26	33	68
Decay time (ns)	300	40	36	<mark>2.2</mark> , 27
Wavelength (nm)	480	420	420	178
Photo-fraction	40%	30%	30%	20%

Back up: resolution comparisons

• First total body PET now, EXPLORER: Energy resolution 11.7% FWHM and time resolution 430ps.

• With liquid xenon: energy resolution 6% FWHM and time resolution for total body PET in Monte Carlo 300ps, obtained now 220ps

Back up: electronics

Data processor (Kintex
Development Board):
Receives data and sends them to

the computer, manages TOFPET configuration, Clock synchronization

- Front-end adapter:

ASIC calibration and reset, controls T^a sensors, SiPMs, clock system control and distribution among chips.

Back up: purification system

