A Novel Total-Body PET Scanner Using Xenon-Doped Liquid Argon Scintillator for Outstanding Detection

An application in medical physics of the DarkSide collaboration

Azam Zabihi, ASTROCENT/CAMK-PAN, Warsaw, Poland On behalf of the 3Dπ TB-TOF-PET Collaboration

ASTROCENT

This project has received funding from the European

olish Science

.....

Union's Horizon 2020 research and innovation

Republic

of Poland

programme under grant agreement No 952480

Dark /

European Union

European Regional

Development Fund

Wave

PET Principle

PET Annihilation Illustration

Three Types of Coincident Events

Liquid Xenon vs. Liquid Argon And Benefit of Cryogenic

	0.5%			
Scintillator:	LAr	LXe	LAr + Xe	LYSO
Decay F/S (ns):	7/1600	4.3/22	~6/100*	41
Wavelength (nm):	128	175	~175 **	420
Density (g/cm ³):	1.40	2.94	~1.40	7.1
Temperature (K):	87	162	87***	298
Photons/keV:	40	42	~41	28.5
Cost (US\$/kg):	~2	~2000	~2	~4

*Shorter slow decay time than the pure liquid argon.

**Scintillation light at a wavelength of 175 nm; Xe operates as a wavelength shifter (WLS).

***Operating at temperatures near the boiling point of argon eliminates the need for cooling and results in lower Dark Count Rate (DCR). SiPM Dark Count Rate (DCR) vs. Temperature

https://oar.princeton.edu/rt4ds/file/1663/1610.01915v1.pdf

Reduction in the dark count rate (DCR), improves the timing capability of the devices and Signal-to-Noise Ratio (SNR)

3Dπ Overview

A Total-body (TB), Time of Flight (TOF) PET scanner

- Xenon-doped Liquid Argon instead of Crystal scintillators
- Multiple detection layers
- Using Silicon Photomultipliers (SiPM)
- Double sided SiPM on scintillation

Geometry:

- 9 annulus detection layers
- Each layer has the scintillator sandwiched between two layers of SiPMs
- Each detection layer has ~18 mm LAr thickness
- PTFE supporting structure
- 2 m in length
- Geant4 simulations

Two configurations:

- * LAr+Xe, as the main focus
- ✤ LAr+TPB (TetraPhenylButadiene: an organic WLS), for comparison

Geant4 Geometry Parameters

Parameter	Value
Inner radius (cm)	45
Outer radius (cm)	64
Length/AFOV (cm)	200
LAr thickness (cm)	16.2
Number of LAr layers	9
SiPM size (mm x mm)	10 x 10
Number of SiPMs	~1 x 10 ⁶
Cryostat Thickness (mm)	6

3DII Geometry rendered in Fusion 360

LIDINE 2023 - Madrid

Fluctuation Sources in Parallel and Perpendicular to LOR

Sources of fluctuation for construction of events parallel to the LOR: 1- Timing fluctuations:

- The statistical nature of scintillation photon detection,
- The time resolution of the SiPMs and their associated electronics.

2-Uncertainty resulting from imperfect scatter depth correction within the annular cylinder.

Sources of fluctuation for construction of events perpendicular to the LOR:

• The lattice size of the SiPM layout imposes a limitation on the resolution in each of the two directions perpendicular to the LOR.

Example 1 Desirable timing resolution: $\sigma_{SiPM} < 60$ ps. Improved PDE (>40%) ensures acceptable resolution, independent of PDE.

In this work, we assume a σ_{SIPM} 60 ps and the PDE is based on ref [1] at an over-voltage of 4 V.

National Electrical Manufacturers Association

NU 2-2018

A guide to characterize PET performance

Scanner FOV

axial

 $\theta_c = \operatorname{atan}(y_c/x_c)$

 $\alpha = z$

x

tangentiaro

Spatial Resolution of Single Point Sources

The spatial resolution of a system represents its ability to distinguish between two points after image reconstruction.

Offset: one-eighth of the AFOV from the end of the tomography device

Spatial Resolution of Single Point Sources

Raw data (before image reconstruction stage)

LAr+Xe improves spatial resolution by more than a factor of 2.

LIDINE 2023 - Madrid

Spatial Resolution of Single Point Sources

after image reconstruction: Filtered backprojection

Central Phantoms:	1 cm radial position		10 cm radial position			20 cm radial position			
<u>Scanner</u>	Radial [mm]	Tangent [mm]	Axial [mm]	Radial [mm]	Tangent [mm]	Axial [mm]	Radial [mm]	Tangent [mm]	Axial [mm]
3Dπ (LAr+Xe)	4.8	4.9	4.5	4.9	4.9	4.5	4.8	5.0	4.6
uExplorer (LYSO)	3.0	3.0	2.8	3.4	3.1	3.2	4.7	4.0	3.2

 $3D\pi$ is able to produce consistent and accurate images regardless of the location of the source.

Sensitivity

The sensitivity test measures the counts per second that the scanner measures for every unit of activity present in a source.

$$S_{\rm tot} = \frac{R_{\rm CORR,0}}{A_{\rm cal}}$$

System Sensitivity
R_{Corr0}: The true coincidences count rate with no attenuation
A_{cal}: Line source radioactivity

	1 0 300		
Line source radial position in transaxial field of view	3Dπ LAr+Xe (200 cm AFOV) [kcps/MBq]	GE SIGNA PET/MR (25 cm AFOV) [kcps/MBq]	uExplorer PET/CT (192 cm AFOV) [kcps/MBq]
Center	564.0	21.8	174.0
10 cm radial offset	501.1	21.2	177.0

A higher system sensitivity indicates that the scanner can detect a larger fraction of the emitted photons, which allows for shorter scan times or lower radiotracer doses.

Noise Equivalent Count Rate (NECR)

$$NECR = \frac{T^2}{T+R+S}$$

Noise Equivalent Count Rate: ability to detect and accurately quantify true coincident counts while minimizing the impact of noise, (random, and scatter events.)

Source Distribution:

A solid right circular high density polyethylene cylinder with a line source.

Three types of coincident events

LIDINE 2023 - Madrid

11

Noise Equivalent Count Rate (NECR)

Preliminary Results

Higher NECR with low activity indicates the possibility to reduce radioactive dose significantly

LIDINE 2023 - Madrid

Image Quality

Measure **image contrast** and **background variability** using "hot" spheres in a uniform background.

Body (Cyan) and Test (Gold) phantom geometries Activity concentration: 5.3 kBq/mL

Spheres (Red) phantom geometries Activity concentration: 4*5.3 kBq/mL=21.2 kBq/mL

Image Quality

uEXPLORER

scanned for 30 min.

Percent contrast= (C_{H,j} j $/C_{B,j}$ $\times 100\%$ $(a_H/a_B) - 1$

 $\mathbf{a}_{\mathbf{H}}\!\!:$ The activity concentration in the hot sphere

Preliminary Results	Comparis				
	Scanner	Peak NECR [Mcps]	Activity concentration at peak [kBq/mL]	Sensitivity [kcps/MBq]	TOF resolution [ps]
	3Dπ (MC) (Preliminary)	~3	17.3*	560	163
		~3.5	30**	300	
	uEXPLORER TB-PET/CT	~1.5	17.3	174	412
	J-PET-TB (MC)	0.63	30	38	500
	GE SIGNA PET/CT	0.22	20.8	21.8	386
Here	VRAIN PET	0.14	9.8	25	229

The preliminary results demonstrate that our scanner system performance is comparable to commercial scanners.

Ongoing activities: Cryogenics and Hardware

- Developing a hardware prototype of a LAr+Xe PET ring at Cagliari, Sardinia
 - A dedicated laboratory is being set up in Sardinia for conducting tests and commissioning the * cryostat.
- INFN Torino developing a front end ASIC board

Next steps

Simulation/Software

- Experiment with newer reconstruction algorithms Improve Geant4 simulation
- Optimize detection layer geometry

Hardware

- Testing ALCOR board with LAr+Xe Ensuring stability and homogeneity of LAr+Xe Set up cryogenic infrastructure at Sardinia Develop the PET scanner prototype

Thank you

azabihi@camk.edu.pl

