

Bundesministerium für Bildung und Forschung

A liquid-phase circulation-mode argon purification system

<u>Christoph Vogl</u>^{1*}, Mario Schwarz¹, Patrick Krause¹, Grzegorz Zuzel², and Stefan Schönert¹

¹TU-Munich, Physics Department, Garching, Germany ²Jagiellonian University, Institute of Physics, Cracow, Poland

*<u>christoph.vogl@tum.de</u>

High-purity noble liquids are difficult to procure, creating the need for on-site purification

Impurities in noble liquid detectors strongly deteriorate performance

Noble liquids often not available in required purity (or expensive, in limited amounts, etc.) → Experiments perform purification themselves

High-purity noble liquids are difficult to procure, creating the need for on-site purification

Impurities in noble liquid detectors strongly deteriorate performance

 \rightarrow Experiments perform purification themselves

There are several modes in which noble liquids can be purified

Source tank ≠ drain tank

- / Efficient
- 🖌 Does not need a pump
- ✗ Needs two separate tanks
- x only possible during detector filling, not possible during experimental runs

There are several modes in which noble liquids can be purified

Source tank ≠ drain tank

- Efficient
- 🖌 Does not need a pump
- ✗ Needs two separate tanks
- x only possible during detector filling, not possible during experimental runs

Source tank = drain tank

- X Less efficient b/c impurities dilute
- ✗ Needs a pump
- 🗸 Only needs one tank
- possible during experimental runs

In which phase to purify?

Liquid phase

- ✓ No need to change phase (no boiling or condensing)
- V High throughput due to high density
- Possible during detector filling in batch mode
- ✗ Less effective

Gaseous phase

- Very effective due to high mobility
- X Need to change phase at least once (recondensing and/or boiling)
- ✗ Less throughput

Here: Purification in liquid phase and either batch or loop mode

LAr can be purified with commercially available dispersed copper and molecular sieves

Water removal: Adsorption on molecular sieve with pore size of 4 Angstrom

Oxygen removal: Chemical binding to copper via $2Cu + 0_2 \rightarrow 2Cu0$

Some nitrogen is retained as well

Filling of purification cartridges with molecular sieve and dispersed copper

Filled 2005 g of molecular sieve 4 A, and 2341 g of copper catalyst into stainless steel CF100 cylinders

Piping and instrumentation

CAD drawing of the purifier

Determination of the scintillation parameters with "LLAMA" a triggered SiPM array

The LEGEND Liquid Argon Monitoring Apparatus (LLAMA) operates **completely submerged in LAr**, and features⁽³⁾

- ²⁴¹Am scintillation light source
- 3 "source" SiPMs providing the **trigger** and **p.e. yield**
- 13 peripheral SiPMs providing **time structure** and **propagation information**

³[M. Schwarz et al., ANIMMA 2021 (July 2021)]

11

LLAMA is operating in SCARF, a 1 ton LAr test stand

Located in shallow underground laboratory (depth of 10 m w.e.)

Muon flux reduced by factor of 4

Able to house LLAMA for various LAr scintillation studies, e.g. XeDLAr at LIDINE 2021: <u>C. Vogl et al 2022 JINST 17 C01031</u>

Alternative setup: Up to two germanium detectors + fibers w/ SiPMs

Application #1: Filling of "SCARF" cryostat

First performance test when filling 1 ton of LAr into empty cryostat "SCARF"

Initial impurities in delivered 600 L LAr
tanks (vendor certificates):

1) $[O_2] = 0.5 \ \mu L/L$ $[N_2] = 0.5 \ \mu L/L$ $[H_2O] < 3 \ \mu L/L$ 2) $[O_2] = 0.2 \ \mu L/L$ $[N_2] = 0.3 \ \mu L/L$ $[H_2O] < 3 \ \mu L/L$

Application #1: Filling of "SCARF" cryostat

Initial impurities in delivered LAr tanks:

1)
$$[O_2] = 0.5 \ \mu L/L$$

 $[N_2] = 0.5 \ \mu L/L$
 $[H_2O] < 3 \ \mu L/L$
2) $[O_2] = 0.2 \ \mu L/L$

Measured triplet lifetime after purification: **1.31 ± 0.02 μs** Corresponds to^(1, 2) < 0.01 μ L/L 0₂-equiv. and < 0.8 μ L/L N₂

¹[R Acciarri et al. 2010 JINST 5 P05003] ²[R Acciarri et al. 2010 JINST 5 P06003] 14

Application #2: Loop-mode purification of contaminated LAr

Triplet lifetime in SCARF reduced to 1.00 \pm 0.02 μs due to contamination with air

Upgrade of setup to accommodate loop-mode purification: Install **active LN₂ cooling** and use **submerged cryogenic liquid pump**

Purification cartridge wrapped in copper coil for active LN_{2} cooling

Cryogenic submerged LAr pump

Single-day purification runs in loop mode

3 purification runs at different pumping speeds between 225 L/h to 450 L/h Increase from 0.98 \pm 0.02 μs to 1.25 \pm 0.02 μs after ~ 9 volume exchanges

42 h purification run and aftermath

Long ~ 42 hour continuous purification run (10.4 volumes exchanged)

Increase back to ~ 1.3 µs! Purification complete!

However, **photo-electron yield not** completely recovered! 29.21 ± 0.02 p.e. after purification, 34.56 ± 0.01 p.e. before contamination.

Origin unclear (as of yet)

¹[R Acciarri et al. 2010 JINST 5 P05003] ²[R Acciarri et al. 2010 JINST 5 P06003]

Conclusions

- High chemical purity is paramount for noble liquid detectors
 → on-site purification necessary
- We constructed a LAr purification system using dispersed copper and 4 A molecular sieve
- It purifies in batch and loop mode in liquid phase to sub-ppm levels (triplet lifetime ~ 1.3 μs)
- Outlook: Build model (improve understanding) of purification columns and provide vacuum insulation to reduce boil-off.

Regeneration procedure

Molecular sieve saturated with water: Heat to ~ 250 °C and apply vacuum for a few hours.

Oxidized copper:

Heat to 200-250 °C and flush with hydrogen in low concentrations (≤5 %) in an inert carrier gas (e.g. nitrogen or argon) until some 100 cartridge volumes have been exchanged. Finally, apply vacuum.

Radon emanation from adsorbers

- 0₂ adsorber (CU-0226 S 14 X 28): (0.43 ± 0.03) Bq/kg
- H₂O adsorber (MS 5A): (1.32 ± 0.04) Bq/kg

Loop mode purification details

Run #	Frequency	Volume flow	Duration	Total volume exchanged	# Cryostat volumes exchanged
1	3 Hz	450 L/h	5.6 h	2510 L	3.5
2	2 Hz	300 L/h	7.6 h	2280 L	3.2
3	1.5 Hz	225 L/h	8.1 h	1820 L	2.5
4a	1	150 L/h	28.5 h	4275 L	6.0
4b	1.5 Hz	225 L/h	14.1 h	3173 L	4.4
Sum	_	_	63.9	14058 L	19.6

The LAr pump

Procured from the institute of air handling and refrigeration (IKL) Dresden

Linear drive piston pump.

Geometric flow rate of 150 L/h @ 1 Hz operating frequency

Working frequency range: 0.5 Hz to 3.3 Hz, best performance 1 to 2 Hz

Contaminant removal in concentration (oxygen)

Assume that the contamination only stems from O_2 (not true, but provides a nice estimate)

Then we went from ~ 0.3 ppm O_2 equivalent before purification to < 0.01 ppm afterwards!

In loop mode!

Triplet lifetime and nitrogen concentration

