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Introduction

DUNE is an international collaboration aiming at measuring different
properties of neutrinos, like oscillation parameters, mass hierarchy or the
existence of a CP violation phase

For this, a far detector and a near detector are need to measure the
neutrino fluxes and correct for systematics
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Introduction

Our main objective was to develop a technological asset —a gas mixture-
that could improve the reconstruction capabilities of low energy events
and open the possibility of full optical readout of the ND-GAr

This would give us access to the T, information of the interactions and
facilitate reconstruction at O(2 mm) sampling
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The role of gas mixtures in TPCs

There are several reasons why we want a mixture and not just a pure
noble gas
— It reduces longitudinal and transversal diffusion

— It allows to fine tune the drift velocity

— It quenches VUV-photons and prevents destabilization of the avalanche-process due to
photoelectric effect

However, finding a scintillating mixture that provides all those benefits
while keeping the target Argon-pure is not obvious. Possible candidate: CF,
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Why CF,?

« Somegood general properties

— Transverse diffusion (at 1% mixing) of less than 1.6 mm/mY/2, better than Alice (2.2), T2K
(2.7)or P10gas (1.8)

— It scintillatesin the UV and visible bands so latter can be detected using commercial
photosensors

— Previous works with a triple GEM setup have shown charge gains up to 108, with which
optical gains of 10°are possible, enabling both optical and charge based readouts
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Experimental setup for spectroscopic
measurements

* Asmall chamber was built with a thin
aluminum entrance window, an aluminum
foil as cathode and an anode were we
collected the current

* We collected the light with a CCD
spectrometer after the gas was irradiated
with an x-ray tube

* Thesystem had an RGA for purity control
and the main impurities found were water,
nitrogen and oxygen
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Experimental setup for spectroscopic
measurements

Measurements were taken at no field and at a field high enough to ensure current
saturation. Different tube intensities, pressures and mixtures were explored

The results presented are proportional to the number of photons detected divided
by the saturation current and the W, value for each mixture

We see no signs of space charge or recombination effects, as expected based on
ionization density considerations
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Results for pure gases

* The main bands come from transitions of CF,**, CF;", argon’s third

continuumand its atomic decays

* Peaksfrom impurities in the chamber come from OH and N, and are

prominentat 1 bar
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Infrared emission

In general, the impurity peaks tend to decrease with pressureand CF,
concentration

Theyield of the differentargon infrared peaks decreases with pressure

This behavior is consistent with self-quenching, be it either 2-body or 3-body
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Band analysis

The visible band seems to indicate the presence of an optimum

The interplay of argon’s third continuum and the UV scintillation of CF, causes the
appearance of a minimum
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Model and data comparison

 Akinetic model was developed where we compute the scintillation probabilities of
different states of interest, namely CF,**(C), CF;"(1E",2A2") and an effective state
representing the precursors of argon’s third continuum
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Model and data comparison

A global fit to the data for each band was performed using a kinetic model
with 4 free parameters -2 for the UV bands and 2 for the VIS bands-, resulting

in a reduced chi-square of 1.5

Good agreement was found for both UV and VIS bands
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Experimental setup for yield
measurements

Yield measurementswere done in our lab with an ?4!Am source in the range of
400-700 nm and 250-400 nm at 10 bar

Wire chambers design copied from ALICE and 4 PMTs with differentfilters, one
of them coated with TPB
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«  We commissionedit in pure Xenon, with a purity compatible with less than
100 ppms of N,, 1ppm O, and 1ppm H,0 _ S
Time and band-resolved scintillation in

e Ws=40+10 eV and triplet constant of 98 ns time projection chambers based on
gaseous xenon - S. Leardini et al




Time dependence of primary scintillation in Ar-CF,
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at 10 bar
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Energy to produce a photon (W,.) and time constant
in Ar-CF, at 10 bar
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Technology demonstrator

* An optical TPC has been assembled at the Galician Institute for High
Energy Physics with an ?!Am source inside

* |t has been instrumented with 4 PMTs to read the S1 and a CCD

camerato do track readout. So far, only one acrylic THGEM is being
used.




* Operated with 1% Ar-CF, at
1 bar

 Both S1 and S2 signals can
be seen at the PMTs

* First tracks coming from the
CCD camera

e



Summary, conclusions
and future work

Thereis convincing evidence of transfer reactions in Ar- CF, leading to a
wavelength-shifting effect at CF, concentrations as low as 0.1%,

At 1% thereis strong scintillation both in the UV and VIS bands in the Ar- CF,
mixture

We have found a gas mixture, Ar- CF, at 1%, which allows a full optical readout
to be implementedin ND-GAr while keeping the target nearly Argon-pure

We have successfully built and instrumented an optical TPC using this gas
mixture where we have seen alpha tracks with both S1 and S2 signals

Our plansinclude an upgrade to a double THGEM and Timepix camera to do
measurementsat high pressure



Fin

Thanks for your attention!



Appendix



Electric field uniformity

* A numerical simulation was run in COMSOL to check the field uniformity
inside the chamber

* We were limited to a 1cm diameter window from the x-rays tube

Electric Potential [V]
T T T T T

cm
Electric potential [V
P v ul 0
g 10 -100
nu H I 5100 or 200
10 | -200 8
9 T -300
8 1 -300 7F
7 -400
1= -400 6
o -500
5 T 500 5F
a1
4+ -600
3 -600
2 a 3k -700
Il 2
(0 -800 i -800
5 11
= -900 200
L.:y ok
X -1000
-1000

1 1 L ! 1 L ! L 1 1 ! 1
0 1 2 3 4 5 6 7 8 9 10 11 cm



Space charge

Particularly hard to demonstrateit is there and that it’s affecting our
measurements

Following a reference paper we try to estimate this with an dimensionless
parameter
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Recombination
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Simulation data

5MeV hadrons

20MeV hadrons

internal muons (~ 20-50 MceV)

external muons (= 20-50 MeV)

Ethres [MeV] |oy [ns] op/E ot [ns] op/E ¢ [ns| op/E ot [ns| op/E
Gy |3.5-34 1-8.7 02-073 [044-19  0.08-036 [055-1.5  0.09-0.23 0.73- 1.55  0.11 - 0.24
G2 |2.6-58 1-25 0.21-0.38 |0.44-0.86 0.08-0.14 [045-0.73 0.07-0.11 0.43-0.71  0.07 - 0.11
Gz [2-24 1-2.1 022-024 [041-066 008-009 [045-062 0.07-0.09 0.42-07  0.05-0.1




