

REactor neutrino LIquid xenon Coherent Scattering experiment (RELICS)

Fei Gao Tsinghua University On behalf of the RELICS Collaboration

LIDINE2023, Madrid, Spain Sep 20-22, 2023

CEvNS Milestones

A fundamental interaction between neut rinos and matter

CEvNS milestones:

- Theoretical prediction-1974
- Experimental validation-2017

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10⁻³⁸ cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

Strategy in Studying CEvNS

The RELICS Collaboration

The RELICS Experiment

✓ Power ~3GW;
✓ Distance to Core ~ 25m;
✓ Expected v flux ~ 1e13 v/cm²/s.

Proposed operation location for RELICS, right outside of containment building.

RELICS Detector Design

 4π LXe veto

Fiducial Volume ~30kg

RELICS Time Projection Chamber

Sensitivity to single electrons:

• Optimal position resolution

S2-only analysis to lower the energy threshold

Optimal background to search for other Types of exotic signals from reactor

Credit: XENON Collaboration

Backgrounds

- Material
- Cosmogenic:
 - Xe127, Ar137
- Muon Induced
- Reactor induced

•••

Instrumental

Material and Cosmogenic Background

放射性核素	聚乙烯	铅	铜	不锈钢	Teflon	PMT 石英窗	PMT 外壳
²³⁸ U	0.23	0.92	0.08	1.8	0.059	0.14	0.16
²³² Th	0.09	0.72	0.01	1.9	0.1	0.17	0.07
⁶⁰ Co	0	0.12	0.04	5.4	0.03	0.62	0.01
40 K	0.68	0.01	0.03	9	0.75	11.1	0.16
²¹⁰ Pb	0	5.14×10^5	0	0	0	0	0
^{137}Cs	0	0	0	0	0	0.79	0

XENON100 Reference Values

source	shield	TPC & Cryostat	Xe127	Ar37
Rate[10 ⁻² /kg/day]	0.2	0.2	0.3	<0.2

Ar37:

Proton bombard

Neutron bombard

- Xe127:
- ➢ Muon bombard
- > Neutron capture

Ar37 Xe1 L-shell 0.27keV N-sl

Xe127 N-shell 0.186keV

Reactor and Environmental Neutrons

The European Physical Journal C, 2019, 79(8).

Environmental n

Reactor n

$1.2x10^{-2} \text{ evts/kg/day}$

1x10⁻³ evts/kg/day

Using CONUS measured spectrum

Muon Induced Background

Total Background Budget

Assuming 99% tagging efficiency for muons in the muon-veto detectors

NR: <0.3 event/kg/day ER: <0.01 event/kg/day/keV

Total Background Budget

@4 ionization electron, signal rate is 1 order of magnitude higher than background

Instrumental Background

Instrumental Background Suppression

Instrumental Background Suppression

RELICS Sensitivity

Provide leading constraints on non-st andard neutrino interactions A precise measurement:

- CEvNS cross-section
- Weak mixing angle
 - Statistical uncertainty down to percent level

RELICS Demonstrator

RELICS Demonstrator

RELICS Demonstrator

20

RELICS Timeline

Summary

- Rich physics and application potentials with CEvNS measurements.
- RELICS is a liquid xenon time projection chamber dedicated for CEvNS detection at reactor.
- Background budget has been studied for the RELICS experiment, showing great potential for a precise measurement.
- RELICS demonstrator has been built to study performance of such detector at sea level.