Measurement of the PDE of Hamamatsu VUV4 SiPMs at Cryogenic Temperature

Laura Pérez Molina on behalf of the CIEMAT neutrino group

Laura Pérez Molina

Motivation

- Photosensor sensitive to LAr scintillation light (127 nm) without the need of WLS
 Appealing for DUNE applications (among others)
- Characterization of the Photon Detection Efficiency (PDE) with wavelength and temperature:
 - Critical to compare simulations with acquired data
 - Reference parameter needed to evaluate performance
- CIEMAT has dedicated setups to measure the PDE at CT:
 - Relative measurement to RT: heat exchanger to measure in a range of [270, 570] nm
 - Absolute measurement: PDE at 127 nm using the DUNE-HD X-ARAPUCA setup

VUV4 SiPMs (series: S13370)

- Directly sensitive to the LAr scintillation light of 127 nm
- Prepared to carry out stable performance at cryogenic temperatures
- 4 VUV4 SiPMs calibrated at RT by Hamamatsu

Laura Pérez Molina

Methodology

Measure the PDE at CT relative to the one provided by Hamamatsu at RT

The followed procedure was:

- **1. Gain calibration** measurements at RT for three different OV values.
- 2. High-intensity light pulse signal acquisition at RT for wavelengths between 270 570 nm.
- **3.** Cooldown of the system to LN_2 temperature.
- 4. Gain calibration measurements at CT for three different OV values.
- 5. High-intensity light pulse signal acquisition at CT for wavelengths between 270 570 nm.

Relative PDE measurement to RT

- SiPM is cooled down by thermal contact with an stainless steel tube (submerged in LN_2)
- Tube is sealed and a vacuum is created with the pump, reaching values of 10⁻⁴ mbar

- Temperature sensor in a PCB next to the SiPM
- SiPM placed at the end of the tube facing the light source

Relative PDE measurement to RT

- SiPM is cooled down by thermal contact with an stainless steel tube (submerged in LN_2)
- Tube is sealed and a vacuum is created with the pump, reaching values of 10⁻⁴ mbar

Gain calibration

The gain measurement is performed by fitting the integrated charge histogram to N Gaussians for 3 different OV

Gain calibration

Gain dependance with OV and Temperature

OV(V)	Gain (10 ⁶)	
	RT	СТ
3.0 4.0 5.0	4.86 ± 0.08 6.35 ± 0.08 7.64 ± 0.09	5.16 ± 0.08 6.93 ± 0.08 8.67 ± 0.08

Laura Pérez Molina

Photon Detection Efficiency

The PDE at CT shows a **decrease** in range 20% to 54% compared to its value at RT

Cross-check measurement in GAr

Relative PDE measurement to RT:

- More temperature sensors and closer to the SiPM
- A light diffuser is used to **homogenize** the light reaching the SiPM from the fiber
- <u>Feasibility</u> for operating with GAr + α -source to measure scintillation light [TO BE USED]

- **50 L** LN₂ vessel
- U-shaped tube where GAr is continuously circulating
- GAr at overpressure
- SiPM is cooled down by thermal contact with an stainless steel tube Measure #PE:
 - → SiPM at RT
 - → SiPM at 87K (LN2 at 2.7 bar)

10

Laura Pérez Molina

Photon Detection Efficiency

The two setups lead to compatible results at different wavelengths

Absolute PDE measurement

- Black box holding VUV4 SiPMs and α -source submerged in LAr
- Low-activity electrodeposited ²⁴¹Am alpha source
 - Energy: 5485 keV (84.45%); 5443 keV (13.23%) 0
 - Activity: 54.53 ± 0.82 Bq 0
 - Rate: 27.6 Hz \bigcirc

$$\epsilon_2 = \frac{PE_{measured}}{PE_{produced} \cdot f_{ph}} \cdot f_{X-talk} \cdot f_{purity}$$

$$egin{aligned} PE_{ ext{produced}} &= LY_{LAr} \,\, E_lpha \,\, q_lpha &= \ &= 50000 \,\, ext{photons}/ ext{MeV} \cdot 5.48 \,\, ext{MeV} \cdot \, 0.72 \ &\sim 2 \cdot 10^5 \,\, ext{photons} \end{aligned}$$

Laura Pérez Molina

LIDINE (Madrid) - 22 September 2023

12

cfr

Absolute PDE measurement

Setup from the DUNE-HD X-ARAPUCAS PDE measurement where the VUV4 SiPMs were used as **reference sensors**

GAr 99.9999 % is liquefied with LN_2 at 2.7 bar

13

Laura Pérez Molina

Photon Detection Efficiency

The absolute measurement for 127 nm shows a compatible decrease in PDE at CT

Conclusions

- First work to measure the PDE of this SiPM at <u>CT</u> and at <u>different wavelengths</u>
- Three setups obtain compatible results showing a <u>decrease</u> in PDE for the Hamamatsu
 VUV4 SiPMs S13370 6075CN when operating at CT
- The difference between PDE at different **temperatures** is also dependant on the **wavelength**: we can see less decrease in the PDE at CT for ~ [450, 480] nm
- The PDE result for 127 nm is in agreement with a recent publication (JINST 17 (2022) 04, P04017)
- Publication in preparation. Stay tuned !!

BACKUP

Laura Pérez Molina

LIDINE (Madrid) - 22 September 2023

16

Relative PDE measurement

COOLING DOWN PROCESS

Laura Pérez Molina

LIDINE (Madrid) - 22 September 2023

17