A Compact Real Time Segmented Double-Scatter Neutron Imager

Billy Boxer, Ben Godfrey, Mani Tripathi UC Davis

LIDINE 2023, Madrid September 22, 2023

Project Goals

- Develop a compact, low-power (=> portable) neutron imaging camera using solid state devices. This design utilizes the proven double-scatter concept.
- Device should be capable of battery or solar panel powered operation for remote deployment.
- Components of this design are EJ-276 scintillator blocks, SensL (OnSemi) SiPM arrays, NeuPix ASICs, and commercial ADCs and FPGAs.
- Demonstrate capabilities in a neutron beam and/or a high intensity neutron source.
- <u>Relevance to LIDINE</u>: Applications requiring neutron scattering based calibrations of prototype dark matter detectors and imaging of background neutron/gamma sources.

Conceptual Camera Design

Measurement Technique and Errors in Resolution

 $E' = m/2 [d/\Delta t]^2$

		I	
Measured Quantity	Feature	Method	Error
x, y, x', y'	6mm x 6 mm cells	1/sqrt(12)	~2 mm
dE = (E - E')	Light yield	dE~c+k/sqrt(E)	k ~ 200%
z, z'	5 cm tall cell	Top-bottom asymmetry	~2 mm
t, t'	SiPM risetime	1 Gsps digitizer	~ 1 ns
Derived Quantity	Feature	Method	Error
d	Un-correlated errors	Quadrature	~ 3.5 mm
∆t = t' - t	Un-correlated errors	Quadrature	~ 1.4 ns

- These error estimates are for a proof-of-concept device.
- The error in d can be reduced by employing smaller SiPMs and also by enlarging the geometry.
- The fundamental error in Δt is difficult to improve, but enlarging the device reduces the relative error.

Camera Readout Board under development

- SiPM cells will be read out by 7 NeuPix ASICs. A 6-layer board with 2 each power & ground planes.
- No need for fast digitization of analog pulses. NeuPix integrates the area and a slow ADC captures the level.

Time of Arrival Capture

The TOA outputs of each NeuPix are ganged into a single output. The two scatters are required to be far apart in camera geometry, so there is no loss of information if neighboring groups of 4-channels are combined into one.

A total of 14 TOA outputs is well accommodated in a 16-channel CAEN digitizer.

Energy Calibrations for EJ-276 (Details presented in LIDINE 2022)

Construction/Assembly of the prototype

Cube sandwiched between two SiPM arrays.

28 elements wrapped in Teflon and mounted on a PTFE cube.

Complete assembly with signal cables plugged in. Ready to be housed in the dark box.

First Measurement: Scope Traces from a typical event

- F_OUT risetimes will allow for ~1 ns timing. Top trace (yellow) has been deliberately delayed by a few ns for clarity.
- S_OUT areas from top and bottom readouts enable z-position estimation from asymmetry.

Conclusions

- A prototype camera geometry has been designed and assembled.
- Preliminary bench tests using an AmBe source show promising results.
- A readout board using NeuPix ASICs, Analog Devices LTC2324-12 ADCs, and Trenz Electronics module based on AMD/Xilinx Zynq FPGAs is being developed.
- Beam tests using a fast neutron beam at the Crocker cyclotron at UC Davis are being planned.

Future:

- Remove segmentation of camera scintillator walls. Light sharing among cells along the length of the wall improves resolution in that dimension.
- Investigate feasibility as a gamma imager. Δt is not useful in this case, so one can assume incoming gamma energy and scan over known emission lines.
- Enlarge camera dimensions (provided resources can also be enlarged).

SiPM Array dimensions

https://eu.mouser.com/datasheet/2/308/ARRAYJ-SERIES-D-1489628.pdf

ARRAYJ-60035-64P Board Drawing

Pulse Shape Discrimination

- Emission spectra can be dependent on the type of interacting particle, especially due to differential excitations of various excited states, which subsequently decay with distinct decay constants.
- The resultant electronic signal pulse has these characteristics encoded in its temporal profile.

We are defining and implementing an electronic version of this concept on a custom chip (NeuPix) that discriminates between neutrons and gammas based on the quantity PSD.

SiPM + Scintillator Characterization Test Bed

- A 6x6x6 mm³ block of scintillator is coupled to a 6x6 mm² SensL J-Series SiPM.
- Both SOUT and FOUT outputs are recorded by a CAEN digitizer (250 Msps)
- Two types of scintillators used: Stilbene and EJ-276.