TAGGING NEUTRINO EVENTS WITH THE SBND PHOTON DETECTION SYSTEM

LiDINE 20/09/23

Francisco Javier Nicolás Arnaldos on behalf of the SBND collaboration

fjnicolas@ugr.es

The <u>SBND Photon Detection</u> <u>System (PDS)</u> was introduced in the previous talk

- Current status of the detector simulation and reconstruction
 - What **<u>new applications</u>** can we explore with this innovative PDS?
- ► Focus on the ability to **tag neutrino events through timing information***
- ► SBND will detect neutrinos from the <u>Booster Neutrino Beam (BNB)</u>:
 - With a PDS system with enough time and spatial resolution: potentially able to recover the neutrino beam inner structure <u>using only light signals</u>

► In this talk: analysis based on the PMT system (but extendable to XARAPUCAs)

KEY ELEMENTS OF THE SBND PDS

- Detailed description in the talk from Rodrigo Álvarez
- ► Reminder: a PDS with
 - ► high coverage
 - able to distinguish between 2 light components

- Coated PMTs: VUV/direct + visible/ reflected
- Uncoated PMTs: visible/reflected

SIMULATION WORKFLOW IN SBND

Generation

Neutrino + cosmic overlay generation: GENIE [3] + CORSIKA [4])

Propagation

- Particle tracking (Geant4)
 - Photon propagation ("fast optical models")
 - LAr light emission profile
 - Photon detector geometry acceptance
 - Rayleigh scattering
 - Reflections + absorptions
- [1] S. Agostinelli *et al.*, Nucl. Instrum. Meth. A 506 (2003) 250-303
- [2] E.L. Snider and G. Petrillo, J.Phys.Conf.Ser. 898 (2017) 4, 042057
- [3] C.Andreopoulos et al., Nucl.Instrum.Meth.A614 (2010) 87-104
- [4] D. Heck *et al.,* CORSIKA: A Monte Carlo code to simulate extensive air showers

Francisco Javier Nicolás Arnaldos

- A detailed detector simulation was developed for SBND:
 - Based on Geant 4 [1] and LArSoft [2] packages

Detector response

- Data driven Single Electron Response (SER)
- Detection efficiency
- Saturation + non linearities
- Noise + SER fluctuations

SIGNAL RECONSTRUCTION IN A NUTSHELL

- ► Reconstruction done in three steps:
 - ► Step 1: signal **deconvolution** (gaussian filter)
 - ► Step 2: **hit** finding
 - Step 3: <u>hit **clustering**</u> among different optical detectors:
 - "flash of light"
 - ► Provides **interaction time** $(\equiv t_0)$

PROPAGATION EFFECTS (I)

- Neutrino time of flight (ToF_{ν}): they can propagate along 5 meters in the beam direction (d_{beam})
- SBND located 110 m from the target
 - At first order: <u>0 to 17 ns</u> <u>time delay</u> for each bucket
- To match the flash time with a beam bucket: we need to correct by ToF_{ν}

POSITION RECONSTRUCTION

- > PDS <u>high granularity</u>: estimate the ν position in the anode plane
- Threshold + barycenter-based method

PROPAGATION EFFECTS (II)

- Scintillation photons have to propagate from the energy deposition point to the PDS
- ► First order: dependent on the event mean <u>drift location</u>
 - ► Plot on the right: time resolution (Δt_0) as a function of d_{drift}
 - ► Up to ~ 15 ns time delay
- ► To pair the flash time with a beam bucket:
 - ► Need to correct by the photons time of flight (ToF_{γ}) :

DRIFT RECONSTRUCTION

- ► <u>Two light components, that can be decoupled by our photon detectors</u>
- The closer to the cathode, the more visible light:
 - ► Ratio of light seen by uncoated and coated PMTs ($\equiv \eta$) correlates with the drift
 - ► SBND PDS sensitive to the drift location

POSITION RESOLUTION

- SBND PDS provides an independent 3D position reconstruction using only scintillation light
- ► Expected resolution:
 - ► Drift: ~ 15 cm
 - ► Beam direction (Z): ~25 cm
- ► Translated to ToF: nanosecond level

BNB RECONSTRUCTION

• True and reconstructed neutrino times after ToF_{γ} and ToF_{ν} subtraction:

► Average over all the buckets:

- This reconstruction is done using <u>exclusively PDS information</u>: very simple approach
- Different approaches including TPC information <u>already probed with data</u> by previous LArTPC experiments

- ► The SBND PDS is potentially able to resolve the BNB inner structure <u>using exclusively the light signals</u>, thanks to:
 - ► An independent <u>3D reconstruction</u>
 - ► $\underline{O(2 \text{ ns})}$ time resolution
- ► Multiple applications:
 - ► Improve cosmic background discrimination
 - Exotic searches: look "between buckets" for massive longlived particles (e.g. Heavy Neutral Leptons)

Thank you!

