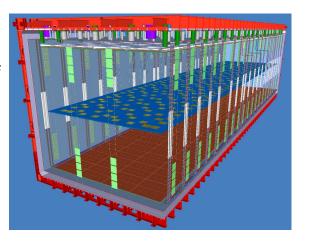

Optimization of the X-Arapuca Photon Collector for the DUNE FD1 and FD2

C.M. Cattadori - INFN Milano Bicocca

on Behalf of the DUNE Collaboration



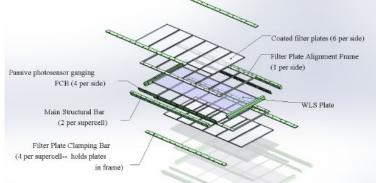
The DUNE PDS

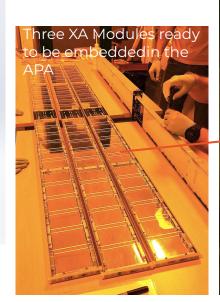
LY requirement to boost the trigger (p-decay) and energy resolution (SN ν) capabilities of the DUNE PDS::

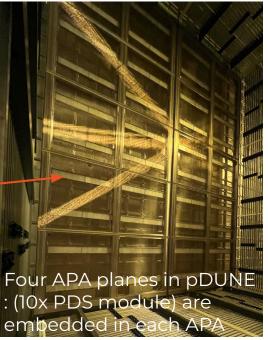
- LY_{min} > 0.5 PE/MeV
- LY_{ave}> 20 PE/MeV
- PDE of XA: 2%-3%
- S/N > 4
- DCR/ch < 1 kHz

FD2

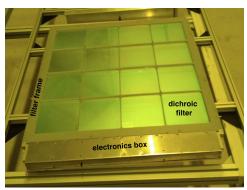
- 6000 XA devices (48 x 10 cm²) embedded in the three Anodic Planes
- SIPM: 48 x 6x6 mm² (1.73 cm² or 3.9% Si coverage) ganged @ 48
- LArTPC: Horizontal Drift


- 320 XA devices (58 x 58 cm²) on the cathode (320kV) → PoF bias/readout
- 320 XA devices on the membrane
- SiPM: 160 x 6 x 6 mm2 (5.8 cm² Si,
 1.6% Si coverage) ganged @80
- LArTPC: Vertical Drift Technology


The FD1 PDS & X-Arapuca device



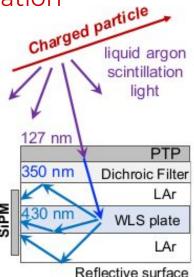
- FD1-XA: $(50 \times 10 \text{ cm}^2)$
- 4 SuperCells/module
- 10 module/APA
- 1500 Total Modules
- 1000 Double sided 500 single sided

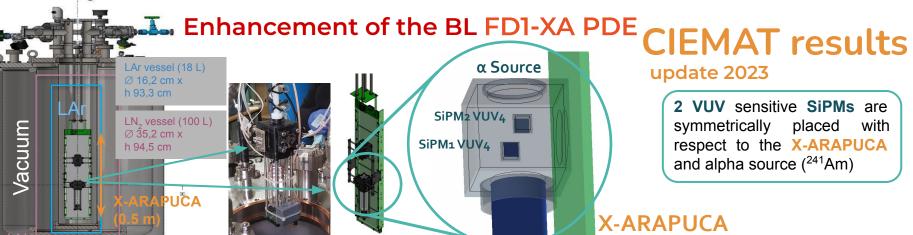


The FD2 PDS & X-Arapuca device


	WLS dimples	DF size (mm²)	DF	SIPM	PoF	SoF	shared elec. box
М1		100x200	ZAOT	HPK			х
M2		100x200	ZAOT	HPK			х
М3	x	100x200	ZAOT	HPK			x
М4	х	100x200	ZAOT	HPK			x
M5	x	150x150	PE	FBK		х	
М6	x	150x150	PE	HPK			
М7	х	150x150	PE	HPK			
M8	x	150x150	PE	FBK			
C1		100x200	ZAOT	HPK	x	х	
C2		100x200	ZAOT	HPK	Х	Х	
C3		150x150	PE	FBK	х	X	,
C4	x	150x150	PE	HPK	х	х	
C5	x	150x150	ZAOT	HPK	х	х	
C6	х	150x150	ZAOT	HPK	х	Х	
C7	x	150x150	ZAOT	FBK	х	Х	
C8	X	150x150	ZAOT	HPK	х	х	

4 (of 8) flex circuits with 20 SiPMs passively ganged at groups of 5




2 x Cath-XA & 1 x memb-XA in the CFRN Coldbox

Optimization (and measurements) of the XA PDE

- Developed methods and setup to accurately measure the absolute PDE of the XA device and
- Developed accurate simulation of the photon transport in the device
- Improved the XA components quality and configuration
 - ✓ WLS-LG plate (FD1 & FD2)
 - High grade PMMA embedding WLS-dye* showed superior performances of the BL PVT product**.
 - Tailored WLS-dye concentration and thickness vs. plate size.
 - ✓ WLS-LG Optical sealing (both FD1 & FD2)
 - Enhanced light trapping in the WLS
 - ✓ SiPM to WLS-LG coupling (both FD1 & FD2)
 - ✓ Dichroic Filters (only FD2)

update 2023

2 VUV sensitive SiPMs are symmetrically placed with respect to the X-ARAPUCA and alpha source (²⁴¹Am)

X-ARAPUCA

$$\epsilon_{XA}\left(\%
ight)\!=\!rac{PE_{mm^2}\left(XA
ight)}{PE_{mm^2}\left(Ref.\ SiPM
ight)}\!\cdot\!f_{corr}\cdot\!\epsilon\!\left(Ref.\ SiPMs
ight)$$

 $\epsilon_{XA}\left(\%
ight) \, = \, 100 \, \cdot \, rac{PE(XA)}{\gamma_{
m expected}} \cdot f_{corr}'$

 ε_{YA} (%) - DIRECT MEASUREMENT (VUV4 Comparison)

 ε_{VA} (%) - CROSSCHECK (From known LY and MonteCarlo)

€(Ref.	SiPMs)	= 11.3%
--------	--------	---------

PDE 40%

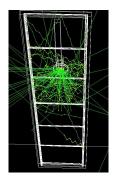
PDE 45%

PDE 50%

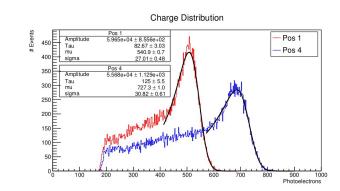
FBK+EJ	HPK +EJ	HPK +G2P
1.41 ± 0.11	1.56 ± 0.12	2.12 ± 0.16
1.63 ± 0.12	1.78 ± 0.14	2.38 ± 0.18
2.01 ± 0.15	1.93 ± 0.15	2.58 ± 0.20

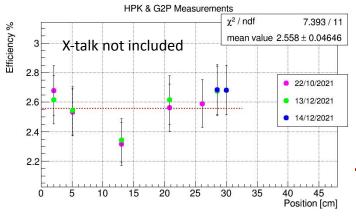
1			
	FBK+EJ	HPK +EJ	HPK +G2P
	1.34 ± 0.10	1.51 ± 0.12	2.02 ± 0.17
	1.56 ± 0.12	1.72 ± 0.14	2.28 ± 0.19
	1.93 ± 0.15	1.87 ± 0.15	2.51 ± 0.21

High grade **PMMA** embedding WLS-dye.


+30%

Enhancement of the BL FD1-XA PDE: INFN-MiB


update 2023



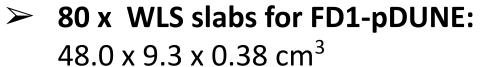
Method: z-scanning of the whole cell (~2 Sr) with an 241 Am exposed α source (JINST 16 (2021)09027)

 $\epsilon = \frac{4\pi \cdot \alpha \text{ peak(ADC)}}{\text{s.ph.e.(ADC)} \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \text{q}_{\alpha} \cdot \Omega}$



No correction for LAr purity applied.

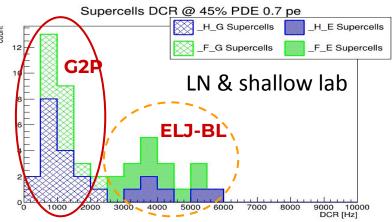
Expected: < 8%


		SiPM PDE	XA PDE MiB Xtalk corr.	XA PDE CIEMAT Xtalk corr.
	HPK & G2P	50%	2.49 (0.15)	2.51 (0.21)
	FBK & G2P	45%	2.1 (0.23)	1.87 (0.15)
€	FBK & Eljen	45%	1.8 (0.18)	1.56 (0.12)

G2P WLS: Production for pDUNE FD1 & FD2

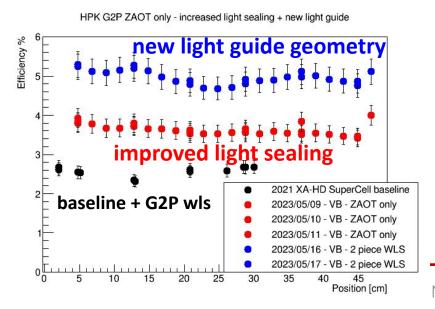
Showed R&D and mass production capabilities

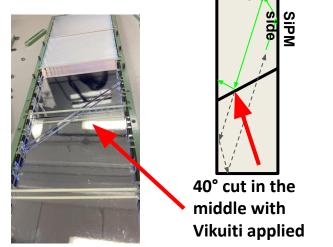
Validated Casting, Laser cut and edge polishing procedures of the WLS from the as-casted plates..

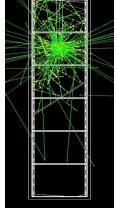

➤ 16 (M0)+ 6 (M1) WLS slabs for pDUNE-FD2: 60.7 x 60.7 x (0.38 & 0.55) cm³

G2P-WLS features & Performances

- Superior Cryoresilience: No cracks or failures in cooling/warming cycle at rate of 3-4 mm/sec of the 80 x FD1 pDUNE & 16 x FD2 Module-0 plates
- Superior light guiding surfaces as casted
- Superior LY and DCR of XA cells with PMMA vs PVT (BL) WLS

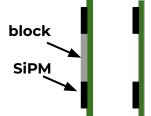


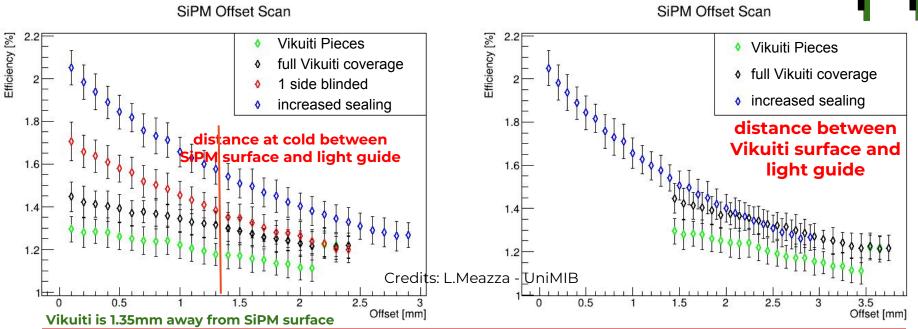




FD1: Modified WLS-LG geometry

Major improvement of the FD1 XA PDE cutting the WLS-LG in two parts by a 40° cut and improved LG light-sealing optimization via optical sims measurements with MiB setup





FD1: Study of the LG-to-(SiPM & reflectors) position

- PDE is strongly dependent on the SiPM-LG distance and
 - o distance of the Vikuiti reflector seems to be the main factor
 - → proposed a wider (+1 mm) WLS-LG & to flush reflector to SiPMs

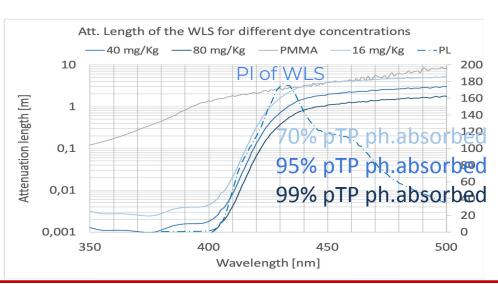
FD2: SIPM - to Lightguide coupling

FD2-XA designed with no SiPM-to-WLS-LG gap.

To follow the 1% shrink of the PMMA → ~6 mm

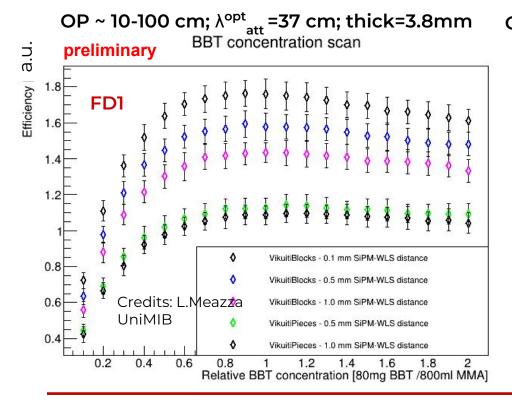
- SiPMs located on flex circuits + spring loaded mount
- SiPM in dimple cuts (flat or cylindrical) machined at the edges of WLS

WLS-LG: Attenuation length (λ_{att})

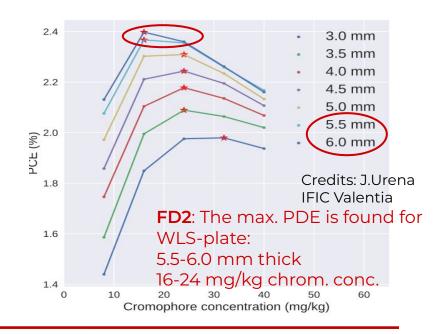

- Both the Absorbance of the pTP photons & the λ_{att} of the photons emitted by the secondary WLS depends on the WLS chromophore concentration
 - The chromophore concentration & WLS-LG thickness are tuned to maximize the Photon Collection Efficiency (PCE)
- λ_{att} (400-500 nm) is the leading parameter for high PCE.
 - \circ Required: λ_{att} > Optical Path

A=
$$\log_{10} (1/T)$$

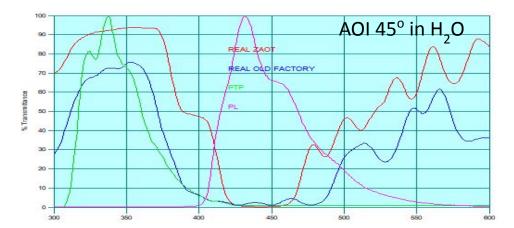
T= $I/I_o \exp(-d/\lambda_{att})$
A = ε c d


 ε = molar extinction coeff.

c = concentration


d = optical path

WLS- LG: chromophore concentration and thickness optimization for FD1 and FD2

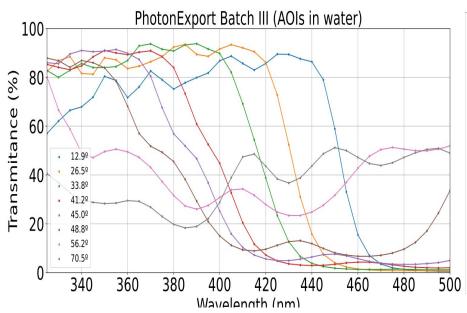


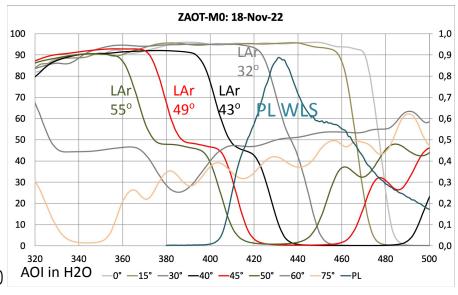
OP ~ 60-200 cm; $\lambda^{\text{opt}}_{\text{att}}$ ~ 200 cm; thick = 5.5 mm

Dichroic Filter Optimization for the FD2 Module-0

- Found two new vendors for FD2 production
- DF Designed to operate in LAr (@45°), pass 300-400 nm & reflect 400-500 nm
- Pro: Improved transmittance in the pTP emission range
- Pro: Improved reflectivity in the WLS-LG emission range
- Cons: Narrower reflectivity window
- Size increased from $10 \times 10 \text{ cm}^2$ to $15 \times 15 \text{ cm}^2$ to increase XA the active surface

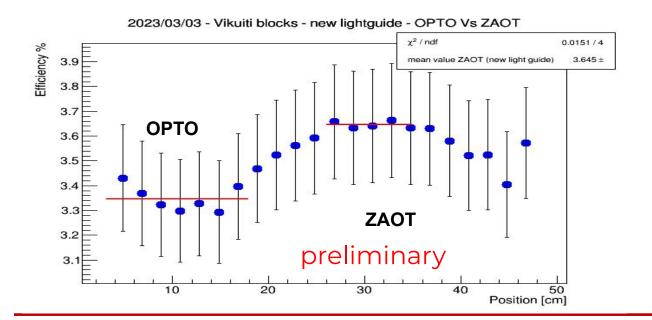
		Subs	Design
ОРТО	FD1	B270	45° Air
ZAOT	FD2	BF33	45° LAr
Photon Export	FD2	F.silica	45° LAr


The DFT curves measured in H2O


AOI H2O-to-LAr trasnformed by Snell law

Cutoff (n) => $\lambda = \lambda_0 \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta}$

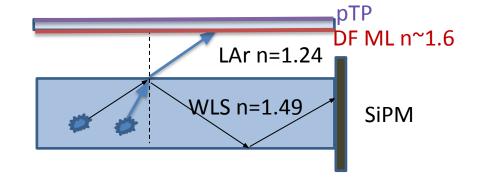
PE- DF: T Curves: 14.5 x 14.5 cm² for Module-0


ZAOT-DF: T Curves: 14.5 x 14.5 cm² for Module-0

Assessment of Module-0 DF performances in a XA in LAr

- the PDE of one FD1-XA equipped with three BL DF (OPTO), three FD2 (ZAOT) has been measured with the MiB setup in LAr
- +10% PDE well reproduced by G4 simulations

Summary


- The PDE of the DUNE PDS building block has been measured and improved
- For The BL-FD1-XA (EJ WLS) a PDE <= 2% was measured</p>
- > The optimization of the FD1-XA components & relative configuration
 - ✓ Change of the BL WLS-LG → PDE~ 2.5%
 - The G2P PMMA WLS-LG is now the BL for FD1 & FD2
 - ✓ SiPM-to-WLS-LG contact & reflectors → PDE ~3.5%
 - ✓ WLS geometry to recover photons ineffective paths→ PDE ~5%
- The PDE of the FD2-BL XA as deployed in the FD2-ModuleO has been measured (F.Di Capua's talk) ~ 2% (preliminar)
- FD2-XA PDE optimization is being pursued
 - Optimization of the WLS chromophore concentration & thickness (M1)
 - ✓ Optimization of the Dichroic Filters (Module0 & Module1)
 - ✓ Optimization of the SiPM-to-WLS-LG contact

WLS-LG: Attenuation length (λ_{att})

For PMMA WLS-LG in LAr, the critical angle (θ_c) = 56°

- For θ > θc photons get trapped and guided by LG-TIR to SiPMs.
 λ_{att} > Optical Path (OP)
- For $\theta < \theta c$ photons leaves the LG and are guided by DF to SiPMs.
 - Tens of reflections may happen before reaching the SiPMs: required superior Optical Density of the DF in the range 440-500 nm.

