

Front-end CMOS Application Specific Integrated Circuits (ASICs) for Light and Charge Readout

Prashansa Mukim, Grzegorz Deptuch, Gabriella Carini, Hucheng Cheng, Shanshan Gao, Dominik Gorni, Jay Hyun Jo, Lingyun Ke, Steven Kettel, Soumyajit Mandal, Xin Qian, Sergio Rescia, Chao Zhang

September 22, 2023

Designed for DUNE : Deep Underground Neutrino Experiment

Primary science goals

Study neutrino/antineutrino oscillations

Detect neutrinos emerging from exploding stars

Search for signs of proton decay

Brookhaven⁻ National Laboratory

Status of ASICs in DUNE

3 ASICs vs. 1 ASIC solution:

- Initially two readout options were proposed:
 - 3 ASICs vs. 1 ASIC (idea of building 1 ASIC, combining FE/ADC/transmission brought in 2016 and included as parallel path of development)
- Evolutionary development MiCroBooNE → DUNE led to the 3 ASIC solution that:
 - Helped perfect the FE (through multiple iterations)
 - Allowed debugging (procedure for ADC calibration)
 - Allowed optimization

LArASIC – status

LArASIC MPW met all the DUNE requirements → fabricated ~1800 P5 and 1800 P5B (180 nm) chips (eng. run) for ProtoDUNE II

LArASIC Chips	Temp.	Tested Chips#	Good # (All channels are normal)	Yield	Ī	
P5	RT	49	49	100 %	5.7	
P5B	RT	1642	1635*	~99.57 %	mm	
P5B	LNT	317	317	100 %		

P5B has improved input ESD protection compared to P5

*Only 1 out of 16 channels in each of the two chips are non-functional >6 months ago, now more statistics is available

Design currently being translated to 65 nm CMOS

LArASIC – block diagram and specifications

	1			1.4.4.4		~ _					Technology	180 nm CMOS – 1-poly	, <mark>6-metal</mark> , M	liM cap	o, sil blk re	esistors	65 nm CMOS: 1-poly, 9-
		G	lobal and	Chann	el Register	s 6-	b Pulser	An	alog Monitor		Supply Voltage	1.8 V					\checkmark
				,							Temperature Range	77 – 300 K (-196 – 27 °C	C) optimized	d for 8	7k (-186 °	C)	\checkmark
	115	•	CA	┣	Shaper	►	AC/DC		SE/SEDC	→OP15	Number of Channels	16					\checkmark
		: !	•				•		•		Max Single-Ended Output Swing	1.4 V peak to peak (0.2	– 1.6 V)				 ✓
			:		:		:		:		Gain Selection (mV/fC)	4.7	7.8		14	25	· · · · · · · · · · · · · · · · · · ·
			:		: 1	ArAS	ic :				Full-Scale Input Charge (fC)	300	180		100	56	· · ·
			:		: '	-7173	· :		:		Baseline selection	200 mV (collection mode	e)	900 1	mV (induc	ction mode)	
			•		•		•				Charge Preamplifier Polarity	Negative (collection mod	de)	Bipo	lar (induct	tion mode)	· · · · · · · · · · · · · · · · · · ·
	12	•	CA		Shaper		AC/DC	-	SE/SEDC	POP2	Adaptive-Reset Current Selection (nA)	0.1	0.5		1	5	•
			~		01		10/00		05/0500	→OP1	Shaper Peaking Time Selection (µs)	0.5	1		2	3	~
	"-		CA		Snaper		AC/DC		SE/SEDC	►ON1	Output Coupling	AC (100 µs HPF time-co	onstant)		DC		✓
	10 -	-	CA	-	Shaper	CHO	AC/DC	-	SE/SEDC	→OP0	Output Selection	Shaper	SEI	buffer	SE	DC buffer	✓
						Ť.				•••	Total Channel Settings	1024					
Bias module with BGR and Temp Sensor					Integrated Test Capacitor	200 fF											
						Temperature Sensor	0.8728 V @ 25°C + 2.868 mV/°C										
					Integrated Pulse Generator	6-bit DAC based											

Configuration Control

SPI interface with 144 register bits

LArASIC (P5B)

New design

(yet to be fabricated)

I²C interface

Output voltage amplitude proportional to the particle energy

Charge Sensitive Amplifier design

- Charge amplifiers use current-mirror based adaptive continuous reset
- A₁ and A₂: 3-stage amplifiers (> 100 dB gain)
- Pole zero cancellation ($C_f R_f = C_z R_z$) ensures fast I_{csa1} pulse and prevents baseline drift

- $C_{z1} = 20C_{f1}$, $R_{z1} = (1/20)R_{f1}$, charge gain provided by $CSA_1 = 20$
- $C_{z1} = (3 \text{ or } 5 \text{ or } 9 \text{ or } 16)C_{f1}$, $R_{z1} = (1/3 \text{ or } 1/5 \text{ or } 1/9 \text{ or } 1/20)R_{f1}$, charge gain (programmable) provided by $CSA_2 = 3 \text{ or } 5 \text{ or } 9 \text{ or } 16$

CSA₁ and CSA₂ charge multiplication check

National Laboratory

CSA₂ reset (leakage) current subtraction

- Reset Quiescent Current (RQI) subtraction for CSA₂ to be implemented in the new design
- Prevents propagation of leakage current and corresponding baseline shift
- To be made programmable independently for each channel

Gain and bandwidth comparisons for amplifiers

A ₁						
Gain Bandwidth						
180 nm	93 dB	4 MHz				
65 nm	113 dB	10 MHz				

- Higher amplifier gain => more precise current multiplication
- Higher amplifier bandwidth => faster output response

A ₂						
	Setting	Gain	Bandwidth			
180 nm	4.7 mV/fC		42 MHz			
	7.8 mV/fC	104 dD	31 MHz			
	14 mV/fC	104 UD	21 MHz			
	25 mV/fC		14 MHz			
65 nm	4.7 mV/fC		56 MHz			
	7.8 mV/fC	114 dD	45 MHz			
	14 mV/fC	114 UD	32 MHz			
	25 mV/fC		22 MHz			

Shaper design

 $V_{s3}(s)$ is similar.....

- Implemented shaper is a 5th order semi-gaussian filter with complex conjugate poles
- V_{csa2} output is a fast pulse, poses stringent requirements on peak capturing circuit (must be fast and accurate)
- Shaper slows down the variations near signal peak
- (Nearly) equal rise and fall times maximize the output signal amplitude for a given pulse duration

Noise minimization strategy

$$ENC^{2} = (C_{d} + C_{in})^{2} \left(A_{w} v_{n}^{2} \frac{1}{T_{p}} + A_{f} K_{f}\right) + A_{p} i_{n}^{2} T_{p}$$

(Sum of white noise, 1/f noise and shot noise components)

Input stage transistors for A₁ implemented using thick oxide (2.5 V) devices in 65 nm to limit leakage current and associated shot noise

$$ENC_f^2 = K_f \frac{(C_d + C_g)^2}{C_g} N_f \Rightarrow C_g = C_d$$
$$ENC_w^2 = 4k_B Tn\gamma \alpha_w \frac{(C_d + C_g)^2}{g_m(C_g)} N_f \Rightarrow C_g = \frac{1}{3}C_d$$

Input stage transistor sized to have $C_g \sim 40$ pF, optimal choice for minimizing noise with $C_{det} \sim$ 150 pF with given power budget

	Minimum allowable transistor length	Input transistor length	Input transistor width
180 nm	180 nm	270 nm	20 mm
65 nm	280 nm	400 nm	24 mm

Transient response : programmable gain

180 nm

65 nm

Transient response : programmable peaking time

180 nm

65 nm

Measured characteristics (P5 – 180 nm)

Measured characteristics (P5 – 180 nm)

Noise in 65 nm (simulated) is about 10% lower

Linearity characteristics (simulated – 65 nm)

Shaper response for charge gain = 3, $T_p = 1\mu s$

Output amplitude Vs. input charge

Next Steps

- Fabricating test structures to obtain better 1/f noise models in 65 nm
- Fabricating the front-end chain in 65 nm
- Checking what is the shortest shaping time achievable with the current architecture
- Customizing the front-end design for shorter shaping times (~ 20 ns, $C_d \sim 20 \text{ pF}$) PIONEER
- Customizing the front-end design to include an on-chip adiabatic capacitor nEXO (light readout)

Thank you!

