The SBND Photon Detection System

LIDINE 23

Rodrigo Alvarez*,

on behalf of the SBND collaboration

*rodrigo.alvarez@ciemat.es

Short-Baseline Neutrino program

man

 $\sin^2 2\theta_{\mu a}$

SBND: the Short-Baseline Near Detector

eve bean v cathode v of the planes

As a LArTPC, SBND has 3 main subsystems

2 TPC volumes

- → Cathode in the middle separates in two TPCs the active volume: 2x5x4 m³ each
- → Wire pitch of 3mm, for a total ~11,000 wires
- mm level resolution of the event, precise calorimetry & particle ID (Bethe-Bloch equation)
- Continuous LAr purifying system to prevent charge (and light) loss (2m drift).

SBND: the Short-Baseline Near Detector

2 TPC volumes

- → Cathode in the middle separates in two TPCs the active volume: 2x5x4 m³ each
- → Wire pitch of 3mm, for a total ~11,000 wires
- mm level resolution of the event, precise calorimetry & particle ID (Bethe-Bloch equation)
- Continuous LAr purifying system to prevent charge (and light) loss (2m drift).

Cosmic Ray Tagger system (CRT)

- CRT walls surround the cryostat with ~4π coverage. They are composed of scintillator panels with SiPMs on the sides.
- → Provides discrimination to backgrounds from cosmic rays.
- Precise timing (ns) and topology of the event allows for selection of calibration samples.

CRT scintillator strip with wavelength shifting fibres in each side

SBND: the Short-Baseline Near Detector

As a LArTPC, SBND has 3 main subsystems

- CRT walls surround the cryostat with ~4π coverage. They are composed of scintillator panels with SiPMs on the sides.
- → Provides discrimination to backgrounds from cosmic rays.
- Precise timing (ns) and topology of the event allows for selection of calibration samples.

CRT scintillator strip with wavelength shifting fibres in each side

2 TPC volumes

- → Cathode in the middle separates in two TPCs the active volume: 2x5x4 m³ each
- → Wire pitch of 3mm, for a total ~11,000 wires
- mm level resolution of the event, precise calorimetry & particle ID (Bethe-Bloch equation)
- → Continuous LAr purifying system to prevent charge (and light) loss (2m drift).

SBND simulation

Photon Detection system (PDS)

- → Composed by 192 XARAPUCAs and 120 PMTs.
- Provides triggering, particle ID, complementary energy reconstruction, background rejection...
- → Sensitive to both VUV, produced by Ar, (direct) and visible light, produced by the TPB coated foils in the cathode plane.
- Nano second-level resolution allows for new physics searches (longlived massive particles).

SBND PDS boxes behind anode wire planes

SBND installation status

TPC moved to SBN-ND December 1, 2022

Detector placed into the cryostat,

April 25, 2023

HV feedthrough installed and cryostat closed

Rodrigo Alvarez-Garrote

First CRT wall installed

May 18, 2023

Light production in SBND

TPB coated foils

Photon Detection System

VUV Light

- Directly produced in LAr volume

- Rayleigh scattering length ~1 m

- TPB & P-Terphenyl (pTP) coating of PDS sensors

pTP absorption & emission spectra

Nuclear Science Symposium (pp. 2228-2233), 2008

Visible Light

- Re-emitted by TPB foils in the cathode plane

- Rayleigh scattering length ~20 m

TPB emission spectra

Eur.Phys.J.C 82 (2022) 5, 442

PDS: Photomultiplier Tubes

Left & right: uncoated and coated PMTs installed in PDS Box

→ 120 total 8" Hamamatsu R5912 PMTs

- 96 TPB coated PMTs (VUV +visible light)
- 24 uncoated PMTs (visible only)
- → 500 MHz CAEN readout.
- → PMT system already tested and characterized by <u>CCM experiment</u>
- → Used for trigger building.

PDS: X-ARAPUCAs

SiPMs	WLS Bar	Filter	Modules in SBND
SensL MICROFC-30050-SMT	Eljen 286	pTP coated 400 nm cutoff	88
SensL MICROFC-30050-SMT	Eljen 280	450 nm cutoff	88
НРК 6050-VE	Glass to power B.	pTP coated 400 nm cutoff	6
HPK-VE 6050-VE	Glass to power G.	450 nm cutoff	6
HPK 6050-HS (↓bias,↑PDE)	Glass to power B.	pTP coated 400 nm cutoff	2
HPK-HS 6050-HS (↓bias,↑PDE)	Glass to power G.	450 nm cutoff	2

SBND X-ARAPAPUCA configurations

- → New scalable technology under development.
- → Photons get trapped inside the module, increasing collection area. Side SiPMs collect the photons.
- → Cut-offs allow for light source discrimination (450nm filter lets only visible light through)
- → CAEN readouts: 14-bit 5 MHz and 12-bit 62.5 MHz
- → Important R&D for future experiments (DUNE PDS is only X-ARAPUCA based).

X-ARAPUCA operating principle. Nucl. Instrum. Meth. A, 985 (2021)

Left: SBND X-ARAPUCA mechanical scheme. Right: mounted module

PDS: X-ARAPUCAs

SiPMs	WLS Bar	Filter	Modules in SBND
SensL MICROFC-30050-SMT	Eljen 286	pTP coated 400 nm cutoff	88
SensL MICROFC-30050-SMT	Eljen 280	450 nm cutoff	88
HPK 6050-VE	Glass to power B.	pTP coated 400 nm cutoff	6
HPK-VE 6050-VE	Glass to power G.	450 nm cutoff	6
HPK 6050-HS (↓bias,↑PDE)	Glass to power B.	pTP coated 400 nm cutoff	2
HPK-HS 6050-HS (↓bias,↑PDE)	Glass to power G.	450 nm cutoff	2

SBND X-ARAPAPUCA configurations

- → New scalable technology under development.
- → Photons get trapped inside the module, increasing collection area. Side SiPMs collect the photons.
- → Cut-offs allow for light source discrimination (450nm filter lets only visible light through)
- → CAEN readouts: 14-bit 5 MHz and 12-bit 62.5 MHz
- → Important R&D for future experiments (DUNE PDS is only X-ARAPUCA based).

X-ARAPUCA operating principle. Nucl. Instrum. Meth. A, 985 (2021)

09/20/2023

Left: SBND X-ARAPUCA mechanical scheme. Right: mounted module

Rodrigo Alvarez-Garrote

Latest PDS status

- → PDS cabling of each box to the top side of the detector.
- → Cold-warm connection through flanges at the top of the cryostat.
- → QA/QC tests performed at different stages.

PDS commissioning

- → PDS commissioning started on warm side. CAEN V1730 digitizers tests performed (no PMTs connected):
 - → Pedestal noise check for different trigger rates
 - → Quantifying the impact of temperature on baseline level.
 - → Checking synchronization between trigger and PDS channels.
 - → Testing PMTs high voltage power supply.

Mean channel noise [ADCs]

PMT CAEN boards

X-ARAPUCA PDE measurement

- Setup developed by CIEMAT neutrino group to measure the photon detection efficiency (PDE) of 6 out of the 8 X-ARAPUCA configurations
- → X-ARAPUCA modules tested in LAr, external Hamamatsu VUV4 SiPMs provide a reference of the light yield (purity independent measurement).

The setup includes:

- SiPM pairs in front of each light source as reference sensors performing flux calibration.
- Both VUV and visible light sources.
- Opaque box that guarantees reduced backgrounds from cosmic rays
- Inner vessel **filled** with **LAr** (cooled with LN2).
- A complete SBND-XARAPUCA module.
- XARAPUCA amplification in cold and warm.

LAr vessel (18 L) Ø 16,2 cm x h 93,3 cm

 LN_2 vessel (100 L) Ø 35,2 cm x h 94,5 cm

Vessels system scheme

VUV X-ARAPUCA PDE

- → Deconvolution of X-ARAPUCA signals performed to reconstruct charge from the slow component due to undershoot (AC-coupled readouts).
- → Fast/slow ratio used to select alpha source events
- → From X-ARAPUCA and reference sensors charge ratio, we can estimate the PDE value.

Hamamatsu XA

SensL XA

OV [V]	PDE [%]	OV
3.5	1.49 ± 0.21	2
4.5	1.77 ± 0.25	2.
6	2.25 ± 0.32	3

]	OV [V]	PDE [%]
	2	2.37 ± 0.37
	2.5	2.59 ± 0.42
	3	2.73 ± 0.42

- Preliminary results, main uncertainty comes from the reference SiPMs PDE efficiency* (~14%).
- PDE to visible light challenging due to dichroic filter transmittance dependance on incident angle.

*JINST 17(04), 2022

Rodrigo Alvarez-Garrote

Conclusions

- → SBND PDS plays a key role for the experiment: triggering, background rejection, but also nanosecond timing resolution opens new opportunities and searches.
- → The unique design of the PDS allows for new analyses and provides crucial information for future LArTPCs such as DUNE.
- → Installation of cold side electronics has been completed. Warm side commissioning already under way. Start of operations in early 2024.
- → First results on the PDE of SBND X-ARAPUCAs, based on measurements performed at CIEMAT lab, are presented.
- → SBND detector will be taking data in the near future, stay tuned!

Thank you for your attention!

Massive long-lived particle searches

Decays out of the expected neutrino windows can hint new BSM particles in our detectors!

arXiv:2304.02076

PDE in a nutshell

For both VUV and visible light, we can compute the PDE efficiency by comparing XA response with VUV calibrated SiPMs for the same light source: **G4 simulations of the setup**

Calibration & crosstalk: Vinogradov fit

- Based on <u>analytical approach</u>, modeling the CT as a binomial convolved with a Poisson distribution (using calibration data runs).
- Results show good agreement with reference values for the VUV4 SiPMs (arxiv: 02977).
- Only spectra with clear pedestal and at least 4 consecutive peaks considered for the fits.

OV	Crosstalk value(%)	Error	Relative (%)
3.5	20.47	0.36	1.75
4.5	29.45	0.76	2.58
6	42.40	1.52	3.59

Hamamatsu XA

OV	Crosstalk value(%)	Error	Relative (%)
2	6.16	0.33	5.30
2.5	7.11	0.49	6.85
3	9.56	0.48	4.99

Reference SiPMs

OV	Crosstalk value(%)	Error	Relative (%)
3.0	10.02	0.08	0.75
4.0	14.84	0.29	1.63
5.0	23.81	0.98	2.82

Visible filters transmittance

Liquid argon scintillation light

EPL (2010), 91(6), 62002

LArTPCs working principle

- → Charged particles produce ionization electrons and scintillation photons inside the TPC.
- → Photon sensors measure the interaction time t_0 with ns precision.
- → Electric field drifts e⁻ towards anode plane.
- → Wire planes(or other readouts) detect the e⁻ producing 3D mm-level resolution images.

