

The Scintillating Bubble Chamber

LAr-10: Overview and progress

LIDINE 2023 - Madrid

Austin de St Croix, PhD student on behalf of the SBC collaboration

Talk Roadmap

1. SBC overview

2. Bubble Chamber Basics

- a. physics motivation (low E NRs)
- b. superheat and nucleation
- c. a bubble event
- 3. Current status (SBC-LAr 10)
 - a. the detector
 - b. progress at Fermilab
 - c. future plans & SNOLAB chamber
- 4. Nucleation thresholds
 - a. in molecular fluids
 - b. why use argon
 - c. proof of concept (Xenon)
- 5. Expected Physics Reach

Scintillating Bubble Chamber

SBC-LAr10: physics scale chamber

- 10kg Ar target, xenon-doping sub keV NR sensitivity (100 eV heat)
- gamma insensitivity
- fused silica jars (contains Argon) submerged in CF₄ (hydraulic fluid)

Readout:

3

- scintillation: SiPMs
- bubble acoustics: piezos
- bubble imaging: LEDs and cameras (XYZ position)

Inspiration from others:

bubble chamber design: **PICO 40L/500** scintillation system: **LoLX** (see LIDINE 2020-22) cryo-cooling: **LUX/LZ**

Why a Bubble Chamber?

Conventional Ar/Xe experiments: scintillation & charge.

high energy \rightarrow discrimination is excellent

at low energy (~ keV NR) → discrimination gets harder

ER/NR bands merging at lower energy. (top) xenon - LZ, from arXiv:2207.03764, (bottom) argon - DS50, from arXiv:1510.00702

Why a Bubble Chamber?

6

Conventional Ar/Xe experiments: scintillation & charge.

high energy \rightarrow discrimination is excellent

at low energy (∽keV NR) → discrimination gets harder

Why a Bubble Chamber?

7

Conventional Ar/Xe experiments: scintillation & charge.

high energy \rightarrow discrimination is excellent

at low energy (∽keV NR) → discrimination gets harder

(threshold detector)

⁸ Bubble Chamber - Superheat

Filling SBC (like normal chamber)

- fill with argon at 1.5 bar, ∽90K
- slowly warm active region to 120-130K

¹⁰ Bubble Chamber - Superheat

Filling SBC (like normal chamber)

- fill with argon at 1.5 bar, ∽90K
- slowly warm active region to 120-130K

Superheated or 'bubble-ready'

- 1. chamber compressed (stable)
- 2. expand chamber (to superheated liquid)
 - metastable state, energy barrier prevents boiling!

Bubble Chamber - Superheat

Filling SBC (like normal chamber)

11

- fill with argon at 1.5 bar, ∽90K
- slowly warm active region to 120-130K

Superheated or 'bubble-ready'

- 1. chamber compressed (stable)
- 2. expand chamber (to superheated liquid)
 - metastable state, energy barrier prevents boiling!
- 3. particle deposits enough heat in small volume
 - nucleation/bubble formation!

Neutron multi-scatter in PICO chamber, Ken Clark - https://indi.to/pXh9y

¹² Bubble Chamber - Superheat

Filling SBC (like normal chamber)

- fill with argon at 1.5 bar, ∽90K
- slowly warm active region to 120-130K

Superheated or 'bubble-ready'

- 1. chamber compressed (stable)
- 2. expand chamber (to superheated liquid)
 - metastable state, energy barrier prevents boiling!
- 3. particle deposits enough heat in small volume
 - nucleation/bubble formation!

useful heat threshold model: *Seitz hot spike* tune Seitz threshold via Temp, Pressure

Seitz threshold relates to NR threshold

Neutron multi-scatter in PICO chamber, Ken Clark - https://indi.to/pXh9y

A bubble event (in 30g LXe chamber)

13

A bubble event (in 30g LXe chamber)

area (au)]

Iog₁₀[PMT

1.5

200

SBC: Status and Progress

Revisiting plan from LIDINE 2022 - items in progress

1. instrument Inner Vessel, install in PV (Fermilab)

- commissioning & calibration (2023-2025) a.
- build second cleaner chamber (DM search) 2.

SBC LAr10 Plan

- improve cleanliness/backgrounds a.
- b. operate at SNOLAB (2024 - ?)
- install Fermilab chamber at nuclear reactor (future) 3.
 - study reactor CEvNS (in Mexico?) a.

SBC LAr10 - 2022

17

2023 has been about combining systems

SBC LAr10 at Fermilab

Since 2022... chamber construction

- improved/replaced majority of plumbing and wiring
- studied SiPM grounding and signal integrity
- installing inner assembly instrumentation
 - RTDs
 - acoustic sensors (installed, tested cold)
- cameras tested (temperature gradient)
- goal: PV and IV combined, closed october 2023

geometric modifications to LED rings (top of PV)

SBC LAr10 at Fermilab

Since 2022... MINOS site for commissioning, calibration

- underground location with neutron source
- construction completed (roof!), prep for install
- goal: bubbles in Jan 2024

19

• do low thresholds work in Ar?

SBC LAr10 cryosystem

20

Cooling system and Pressure Vessel~

- closed-loop LN₂ thermosiphons
- control cooling power via N₂ pressure

can reach argon thermodynamic limit:

 40 eV heat threshold (1.4 bar @ 130K) max pressure ~20 bar

Cooling works: PV filled with LAr!

Can operate with Xe, N_2 or CF_4

Scintillation System - 2022

22

Silicon Photo-Multiplier (SiPM) for light detection

- 32 SiPMs: 24 facing LAr, 8 in LCF₄ (veto)
- high speed analog electronics (LoLX) coupled to 16 ns digitizer (62.5 MHz)

Fermilab Chamber

10-1000 ppm Xe doping (at 128 nm jars absorb, lowers SiPM PDE)

Hamamatsu VUV4 devices quadrants summed in-situ via PCB **SNOLAB/DM Chamber** switch to FBK-LF devices (radiopurity) wirebond to custom PCB (@TRIUMF)

LAr10 SNOLAB/DM chamber

second chamber for DM search at SNOLAB

- different SiPMs, camera strategy (cleanliness)
- optimizing external shielding dominant bkg is gamma induced NRs timeline: begin assembly summer 2024

Searching for DM with 10 kg of Argon...

24

Searching for DM with 10 kg of Argon...

SBC - LIDINE 2023 - Austin de St Croix

Nucleation requirements - Seitz Model

26

- require energy E_T to produce bubble of size R_r
 - overcome enthalpy, external pressure
- bubble smaller than critical radius R_c will collapse
 - must overcome surface tension *σ* see <u>https://arxiv.org/abs/1905.12522</u> for derivation

require dE/dx (or dE/dV) over some threshold

NRs create heat

27

• lindhard and quenching

NRs create heat

28

lindhard and quenching

Electronic Recoil creating heat:

require electronic energy transfer to atomic motion

541 cm

NRs create heat

lindhard and quenching

ERs creating heat:

require electronic energy transfer to atomic motion

molecular fluids (complex molecules): effective transfer due to overlapping vibrational/rotational modes

NRs create heat

lindhard and quenching

ERs creating heat: require electronic energy transfer to atomic motion

Noble Gases: inefficient transfer

Minimal vib/rotational modes \rightarrow 'stuck'

(same fundamental reason for high LY and ER insensitivity)

Molecular Fluids (not) discriminating

Successful DM searches with molecular fluids

- COUPP, PICASSO, PICO (40 active)
 CF₃I C₄F₁₀ C₃F₈
- Gammas nucleate at few keV via ...
 - delta rays

31

 Auger cascades (if possible) Iodine or Xe contamination (arXiv:2110.13984)

Argon and Xenon ER discrimination

Historical evidence of ER insensitivity in noble liquids (bubbles at sub 100eV thresholds) (see Matt Bressler thesis)

• Stump/Pellet, Ar, 1960s ~ 10-30 eV

32

- Harigel, Ar, 1980s ~ 50-75 eV
- Glaser, Xe 1985 2% ethylene

nucleation in xenon requires 2% ethylene doping (quenching) from (1985) <u>https://doi.org/10.1103/PhysRev.102.586</u>

Xenon ER discrimination

Xenon ER discrimination

34

³⁵ Bubble Chamber - NR sensitivity (Xenon)

Bubble Chamber - NR sensitivity (Xenon)

heat threshold ≠ NR threshold

energy escapes critical radius via: track length, scintillation, electron thermalization or drift, phonons, etc...

Efficiency: NR's probability to create bubble

Xenon nucleation efficiencies!

relate closely to E_{NR} three different Seitz thresholds (credit to Daniel Durnford. paper coming soon)

must repeat for Argon using SBC LAr10

Physics Reach - Discrimination and Veto

SBC - LIDINE 2023 - Austin de St Croix

Exciting two years on horizon!

In Summary:

41

- Full detector nearing completion!
- Calibration to begin this winter (Fermilab)
- exciting and broad research potential:

from signal production to DM search

SBC white paper: arXiv:2207.12400v1

Interesting questions and challenges:

- (when) do ERs start nucleating? (Electric field, doping)
- xenon doping homogeneity and photo efficiency
- pressure trigger and DAQ challenges (LEDs vs SiPMs)
- scintillation (CF₄) veto
- accuracy of background model, etc...

SBC Collaboration

K. Clark, A. de St Croix, H. Hawley-Herrera, J. Corbett, B. Broerman, K. Dering, K. Foy

UNIVERSITY OF ALBERTA

M.-C. Piro, M. Baker, D. Durnford

M. Laurin

P. Giampa, J. Hall

Pacific Northwest

C.M. Jackson

NATIONAL LABORATORY

C.E. Dahl, X. Liu, Z. Sheng, W. Zha

R. Neilson, M. Bressler, N. Lamb

Universidad Nacional Autónoma de México

E. Vázquez-Jàuregu, E. Alfonso-Pita

INDIANA UNIVERSITY SOUTH BEND E. Behnke

UC SANTA BARBARA

M. Crisler

SBC - LIDINE 2023 - Austin de St Croix

S. Priya

PennState

UC RIVERSIDE

S. Westerdale

W.H. Lippincott, R. Zhang

Backup slides

Measuring Low E Light Yields in Argon

Typical LY experiment: excellent photo-collection efficiency, *uncertainty in NR rate*

In SBC:

lower photo efficiency, but know NR rate ~100%

'how often do we see excess photon proceed a bubble'

takeaway: with realistic numbers and careful tuning, can measure NR LY at 300 eV in Ar

SBC - LIDINE 2023 - Austin de St Croix

Calibrate NR response with gamma source

 10^{-1}

100

Energy [keV]

102

103

T _{Bubble} ~ 60s P ^{NR} ~ 1e-6 P _{ER} ~ 0.30	(one bubble a minute) (gamma induced NR prob) (gamma competition prob)
R _{gamma} = 1/T _{bubble} 1/P _{NR} ~ 16.6 kHz (Gamma ER rate ~ 5kHz)**	
R _{ambient1PE} ∼ 1kHz f ~ 0.01	(background 1PE events) (fraction ERs giving 1PE)
T	(time resolution of bubble) (photo detection efficiency)
<ly e<sub="" x="">NR>~{2, 0}</ly>	(physics we care about!)
NI	R Light Yield
25 50 Vicm 50 Vicm 20 50 Vi	
- or fibioton:	

Physics Reach - DM Search

45

 10^{-37}

SuperCDMS SNOLAB SNOWMASS projection 2022

 10^{3}

Backgrounds and CF₄

46

Bkgs within 'Physics signal' region:

- single bubble far from walls
- non-distinguishable acoustics
- below scintillation veto threshold

CF₄

SBC - LIDINE 2023 - Austin de St Croix

¹⁹F(alpha, n)²²Na cross-section is large!

but liquid CF₄ scintillates! (~10 PE/keV - gamma) (<5 PE/keV - alpha)

Liquid CF₄ veto:

- Instrument CF₄ space w/ SiPMs
- tag neutron producing events!

NU setup to characterize LCF₄ scintillation (c. Zhiheng Sheng)

- single site neutrons (various sources)
 neutrons from CF₄
- solar CEvNS (irreducible)
- wall nucleation...

Uncommon background - Gamma induced NR

Bkgs within 'Physics signal' region:

47

- single bubble far from walls
- non-distinguishable acoustics
- below scintillation veto threshold

Photo-Nuclear elastic scattering

- Delbrück, Thomson scattering
- a gamma induced NR!
- ~10⁻⁶ probability (1-3 MeV gamma)

current simulation: ~1 event per year (shielding dependent)

Heat vs NR recoil - first order

Has been said "scintillation guenches nucleation" in reality - scintillation removes energy charge as well (e in bandgap, ion in liquid)

$$E_{heat} = K - N_{PE} \times E_{photon} - N_{e} \times (E_{gap} + E_{ion})$$

Assumptions in toy model calculation

- NR range < Seitz critical radius
- electron thermalization < Seitz critical radius
- ignore other processes

48

NEST yields to calculate non-heat energy

full calibration campaign to characterize response (calculations are for guidance)

NR: Energy converted to Heat via NEST Yields

Note on signal production

Recombination is different between Ar/Xe

- faster/easier in Ar
- produces additional local heat (via dissociation)
- test ER nucleation with few 100V/cm field

Xe doping: 178 nm removes 2.7 eV less energy compared to 128 nm

• does ER induced nucleation depend on doping?

from arXiv:1702.03612v1