Monitoring ³⁹Ar Background for DarkSide-20k with DArTinArDM

Daniel Díaz Mairena

CIEMAT - Madrid

On behalf of the DarkSide-20k Collaboration

DArTinArDM is a high precision experiment at Canfranc Underground Laboratory (**LSC**) to measure the concentration of ³⁹Ar in underground argon samples (**UAr**) for **DarkSide-20k**.

DarkSide-20k

- DarkSide-20k is the next project of the GADMC after DarkSide-50
- Under construction at LNGS Hall C
- A **20-tonne** fiducial argon detector filled with **UAr** (50 tonnes total volume)
- **TPC** acrylic vessel surrounded by UAr + Gd-loaded acrylic shell as a neutron veto. <u>A. Caminata's talk</u>
- 21 m² of Cryogenic SiPMs
- The inner detector is immersed in the AAr bath (~700 tonnes)

For more details see Andrea Zani's presentation: The DarkSide 20k Experiment

LIDINE 2023

Eur. Phys. J. Plus 133, 131 (2018)

0.1

1

 M_{χ} [TeV/c²]

xT.ZD (1000 t yr)

100

10

Argon in Dark Matter Direct Detection

UAr for DarkSide-20k

DarkSide-50 measured a ³⁹Ar depletion factor of 1400 in UAr with respect to AAr, i.e. a ³⁹Ar activity of \rightarrow 0.73 ± 0.11 mBq/kg:

This UAr batch was probably affected by an air leak during extraction: **Upper limit**

A full new UAr extraction plan for DarkSide-20k

A higher depletion factor can be expected in the

UAr of DarkSide-20k

We will measure the ³⁹*Ar levels of every batch for Darkside-20k*

Phys. Rev. D 93, 081101 (2016)

Extraction-Purification-Measurement

Production: Urania (Colorado, USA)

- Procurement of 50 tonnes of UAr from CO₂ well
 - Extraction of 330 kg/day, with 99.9% purity

<u>Purification</u>: Aria (Sardinia, Italy)

- 350 m tall cryogenic distillation column to purify UAr and isotopically separate argon and other elements
 - Can process 1 tonne/day with 10³ reduction of all chemical impurities

DArT at LSC

- DArT is a low-background detector designed to measure the ³⁹Ar depletion factor of different UAr batches (URANIA + ARIA):
 - Copper vessel with an active volume of 1.35 kg of liquefied Ar
 620 evt/week for UAr (0.73 mBq/kg)
 - Inner acrylic structure coated with TPB
 - > Mylar reflector to enhance light collection
 - Readout by 1 cm² SiPMs from DS-20k
 2 SiPM test setup and 8 in DArT in ArDM
- Located at LSC under mount Tobazo (~850 m rock)

Full description: 2020 JINST 15 P02024

DArT in Test Setup

DArT test setup:

- \blacktriangleright Cryostat with **pressurized** LN₂ at 85 K
- No veto
- Lead shield flushed with Rn-free air

The test set up allowed us to:

Evaluate of the detector's continuous performance over weeks

Pressure [bar]

1.5

LAr freezing point at 1 bar

80

85 90 Temperature [K]

- Establish the viable operational conditions for the DAQ and electronics
- Characterize of photoelectronics and light collection efficiency
- Set protocols for operating the inner detector
- > Make a preliminary measurement of ³⁹Ar activity in atmospheric Ar

Particle Identification in DArT

Characterization of events in LAr

Pulse shape discrimination (PSD)

Measured $t_{1/2}(^{214} \text{ Po}) = 166.6 \pm 2.6 \text{ (stat) } \mu \text{s}$ Compatible with the value measured with more precise experiments: $t_{1/2}(^{214} \text{ Po}) = 163.47 \pm 0.03 \ \mu \text{s}$ *IAEA Nuclear Data Section*

Characterization of events in LAr

11

Activity of ³⁹Ar in Atmospheric Argon

- A clear pattern of the ³⁹Ar spectrum is visible underground in the Pb-shield
- Assuming a featureless linear background and a threshold of 33 keV, the ³⁹Ar rate is ~1 cps
- The uncertainty is dominated by **systematics**, and this is currently under evaluation

DArT in ArDM

DArT has been designed to be installed inside ArDM single-phase:

- 13 PMTs will see ~1 tonne AAr buffer used as shield and veto
- Pb + HDPE passive shield to minimize external background

Signal: Electrons from the β decay of ³⁹Ar, depositing all the energy in DArT and leaving no signal in the veto (minimal veto threshold of 10 keV). ROI \in [0,600] keV.

Background: γ particles from radioactive decays in the detector materials and in the hall surrounding the detector that leave a signal in DArT.

Full description: 2020 JINST 15 P02024

Hardware Upgrade of ArDM

The refurbishment of ArDM has been completed:

- ➢ 6 tonnes of lead belt attached to the polyethylene shield
- PMT planes mounted
- Reflectors installed inside

ArDM is ready to host DArT

PMT Plan with reflector coated by TPB

Reflector Coated with TPB

LIDINE 2023

DArT 2.0

DArT 2.0 has been designed to operate inside ArDM

We plan to operate DArT and DArT 2.0 in parallel:

- DArT will keep operating in test cryostat and will be used as auxiliary set up and test bench for DArT 2.0
- DArT 2.0 will operate in ArDM to study the underground argon

DArT 2.0 will have 8 SiPMs instead of 2 to increase the light yield

New radiopure acrylic structure is under construction in Canada

The new DArT vessel is ready

Software Upgrade of ArDM

Continuous progress on the software prompt:

- Data handling/storage
- Development of reconstruction/analysis tools
- Tuning of the MC

DArT in ArDM slow control, independent of ArDM's:

- Developed at U. Cagliari based on NI compactRIO-9068 hardware
- Gas system developed by INFN-Cagliari and CIEMAT.
 First tests onsite on-going

Conclusions

- Atmospheric argon is unsuitable for the next generation of rare events searches due to its intrinsic ³⁹Ar activity.
- Underground argon will be key to physics programs for future underground detectors such as DarkSide-20k, ARGO, Legend and DUNE.
- ➤ We have validated the performance of DArT and we are in position to perform competitive measurements of ³⁹Ar activity in atmospheric Ar.
- ➤ We are about to start up ArDM and will soon install DArT 2.0 inside it.
- ➢ In the long term, DArT will measure the UAr batches received from URANIA and ARIA before their use in DarkSide-20k.
- ➤ The first UAr samples are expected for 2025 and we will be ready well in advance. The commissioning of DArT in ArDM is planned for early 2024.

Back up

Ar Excitation and ionization process

Andrea Zani's presentation: The DarkSide 20k Experiment

DArT

Alpha peaks identification

$^{222}Rn (Q - value = 5590,30 \ keV)$ $^{218}Po (Q - value = 6114,68 \ keV)$ $^{214}Po (Q - value = 7833,46 \ keV)$

$$f_1(x) = p_1 e^{-\frac{1}{2} \left(\frac{x-\mu_1}{\sigma_1}\right)^2} + p_2 e^{-\frac{1}{2} \left(\frac{x-\mu_2}{\sigma_2}\right)^2}$$
$$f_2(x) = p_3 e^{-\frac{1}{2} \left(\frac{x-\mu_3}{\sigma_3}\right)^2}$$

	Constantes del ajuste
p_1	$(9,763 \pm 0,643) \cdot 10^{1}$
μ_1	$(7,434 \pm 0,045) \cdot 10^5$
σ_1	$(3,175 \pm 0,213) \cdot 10^4$
p_2	$(8,649 \pm 0,674) \cdot 10^{1}$
μ_2	$(8,165 \pm 0,048) \cdot 10^5$
σ_2	$(3,001 \pm 0,238) \cdot 10^4$
p_3	$(6,625 \pm 0,286) \cdot 10^2$
μ_3	$(1,045 \pm 0,001) \cdot 10^6$
σ_3	$(3,453 \pm 0,095) \cdot 10^4$

 $\boldsymbol{E}(\boldsymbol{x}) = \boldsymbol{m}\boldsymbol{x} + \boldsymbol{n}$

$$m = (7,458 \pm 0,068) \cdot 10^{-3} \frac{keV}{ADCc}$$

$$n = (37,27 \pm 59,60) keV$$

$$E_{222}_{Rn} = (5581,55 \pm 84,63) keV$$

$$E_{218}_{Po} = (6126,73 \pm 88,57) keV$$

$$E_{214}_{Po} = (7830,88 \pm 92,66) keV$$