

First observation of electroluminescence in liquid xenon with microstrip plates

<u>G. Martínez Lema</u>^{1,2} V. Chepel³ A. Roy^{1,2} A. Breskin¹

¹ Weizmann Institute of Science
 ² Ben Gurion University of the Negev
 ³ University of Coimbra - LIP

G. Martínez Lema – Electroluminescence in LXe with MSPs - LIDINE, 21/09/2023

Single-phase detectors

- Advantages
 - No liquid-gas interface
 - Reduced instabilities (interface ripples)
 - No delayed e⁻ emission or e⁻ transfer efficiency through interface
 - No gate-interface-anode alignment problems
 - Horizontal drift-sporadic bubbling not a concern
 - Potential improvement to the S2-only energy resolution
 - Different geometries possible
 - Radial TPC (see talk by Jianyang Qi)
 - Symmetric central cathode TPC→lower voltages needed
- Challenges
 - High EL and CM thresholds →amplification requires extreme electric fields

EL amplification in LXe

- Thresholds
 - Charge multiplication ~ 725 kV/cm Aprile et al
 - Electroluminiscence ~ 412 kV/cm Aprile et al
- Thin wires (5-25 μm)
 - ~ 290 photons/ie @ 6.75 kV Aprile et al
 - ~ x14 e⁻ multiplication @ 6.75 kV Aprile et al
 - single electron sensitivity Qi et al
- Microstrips
 - ~x10 e⁻ multiplication @ 1.7 kV Policarpo et al
 - Unknown light yield $\rightarrow \underline{this \ talk}$

Microstrips

- First proposed by <u>A. Oed</u> in 1988 for the MicroStrip Gas Chamber (MSGC)
- Thin strips deposited on a substrate (ideally VUV-transparent)
- Original design: cathode and anode strips interleaved

A typical PMT waveform

= -2.0 kV

= ground = -2.0 kV = +1.6

Integrated S2 signal

- PMT waveform integrated on a fixed

S2 window

- Integral of S2 increases with V_{anode}
- Max V_{anode} = 2 kV due to

anode-to-cathode discharges

- EL threshold @ $V_{anode} \sim 500 V$

Light yield

- Conversion to pes based on in-situ

PMT calibration

- Light yield @ V_{anode} = 2 kV
 - If e^{-} lifetime \gg drift time \rightarrow LY = 33 ph/ie
 - If e^{-} lifetime \approx drift time \rightarrow LY \gtrsim 100 ph/ie

$$LY = \frac{S2}{\frac{\Omega}{4\pi} \cdot T \cdot QE_{PMT} \cdot N_{ie}}$$
mesh transparency from alpha particle

G. Martínez Lema – Electroluminescence in LXe with MSPs - LIDINE, 21/09/2023

*Error bars represent std, not uncertainty

Data modeling

Aprile et al

- Data fitted to the a CM & EL model _
 - EL threshold (θ_{λ}) ~ 465 kV/cm -
 - CM threshold (θ_2) ~ 785 kV/cm -
 - ~x3 e⁻ multiplication @ 2 kV -
 - In agreement with Aprile et al -

$$\begin{cases} \frac{dN_e}{dx} = N_e(x) \cdot \theta_0 \cdot e^{-\frac{\theta_1}{E(x) - \theta_2}} \\ \frac{dN_{\gamma}}{dx} = N_e(x) \cdot \theta_3 \cdot (E(x) - \theta_4) \end{cases}$$

 θ_1

G. Martínez Lema - Electroluminescence in LXe with MSPs - LIDINE, 21/09/2023

Backplane bias

- Biasing the backplane improves the field configuration
 - Increases the field strength in the vicinity of the anode strips
 - Helps focusing the electrons to the anode strips
- The effect is most noticeable below 2 kV
 - Higher values don't improve light production significantly

Energy resolution

- Gaussian fit to the high-energy side of the S2 integral spectra
- σ/μ = 9.9 % @ 1800 V
- Similar to the results obtained with

10 µm wires by Aprile et al

- Can be improved
 - Thinner strips \rightarrow Higher fields
 - Larger anode-cathode distance

G. Martínez Lema – Electroluminescence in LXe with MSPs - LIDINE, 21/09/2023

Can we do better?

- Performance limited by anode-to-cathode discharges (hundreds of µm apart)
- Higher voltages \rightarrow higher light and charge yields
- Other configurations have been proposed without cathode strips on the front
 - COated CAthode COnductive LAyer electrode (Bouclier et al 1991)
 - Virtual Cathode Chamber (VCC, <u>Capeans et al</u>, 1997)

12

Field simulations

- COMSOL simulations of the MSGC geometry
 - Field strength
 - Field lines
- Field vs ∆r ≡ distance to anode strip along drift line
- MSGC at V_{anode} = 2 kV
 - EL threshold crossed at $\Delta r \sim 10 \ \mu m$
 - CM threshold crossed at $\Delta r \sim 5 \ \mu m$

Prospects: MSGC vs COCA-COLA vs VCC

- MSGC has the best field configuration
 - But operation is limited to ~2 kV a-to-c
- COCA-COLA & VCC can operate at higher voltages without discharges
 - higher e⁻ multiplication and light yields
- COCA-COLA potential
 - ~x14 e⁻ multiplication
 - ~525 photons / ie
- VCC potential
 - ~x40 e⁻ multiplication
 - ~1670 photons / ie

- anode 8 µm wide
- COCACOLA cathode 200 µm wide
- MSGC cathode 400 µm wide

Summary

- Single-phase detectors →solutions to problems faced by dual-phase TPCs
- Microstrip plates
 - EL & CM in liquid \rightarrow high charge and light yields
- We observed for the first time EL in LXe using a microstrip plate
 - Low charge and light yields due to 2 kV a-to-c bias discharge limit
 - > 33 ph/ie @ V_{anode} = 2 kV (potentially \gtrsim 100 photons/ie)
 - $\sim x3 e^{-}$ multiplication @ V_{anode} = 2 kV
- Other MSP designs
 - Higher anode potentials available
 - Much higher light & charge yields + detector stability
 - COCA-COLA
 - VCC

Paper in preparation!

Thank you for your attention