A novel amorphous selenium based photosensor for liquid noble detectors

Patricia Sanchez-Lucas, University of Granada on behalf of the Q-Pix Photondetector group

In collaboration with:

Strength of noble liquid TPCs: anti-correlated emission (and detection) of ionisation charge and scintillation VUV light

Despite being successful, the traditional wire technology of LArTPC for charge readout is too expensive to be implemented in the DUNE modules of Phase-II

■ The solution calls for a pixel-based charge readout

- Robust, simple construction & lower electronic noise

Problem: pixel boards are opaque and the photosensors should be inconveniently located

- over the cathode (huge voltages ~300 kV)
- behind the TPC walls (limited visibility)

Strength of noble liquid TPCs: anti-correlated emission (and detection) of ionisation charge and scintillation VUV light

Despite being successful, the traditional wire technology of LArTPC for charge readout is too expensive to be implemented in the DUNE modules of Phase-II

■ The solution calls for a pixel-based charge readout

- Robust, simple construction & lower electronic noise

Problem: pixel boards are opaque and the photosensors should be inconveniently located

- over the cathode (huge voltages ~300 kV)
- behind the TPC walls (limited visibility)

A pixel sensitive to both scintillation VUV light and Our Proposal **Light Sensitive Pixels** ionisation charge simultaneously (**Q+L sensor**)

Strength of noble liquid TPCs: anti-correlated emission (and detection) of ionisation charge and scintillation VUV light

Despite being successful, the traditional wire technology of LArTPC for charge readout is too expensive to be implemented in the DUNE modules of Phase-II

Benefits of this strategy:

- 1. **Enormous light sensitive area** —> Enormous Photon Yield
	- Light + charge can boost the energy resolution up to 40% at low energies. *PRD 101 012010 (2020)* ■ improved energy resolution
	- light-enhanced particle identification
- 2. **Extremely light granularity** —> New detection capabilities
	- **p** possible light imaging

Sensor Concept: making a photosensitive pixel

A photoconductive substrate over the pixel plane would allow for the integration of charge and light in only one sensor Make the integrations of the Picel Photosensitive Security and the Picel Photosensitive Security and the Picel
Photosensitive Security and the Picel Photosensitive Security and the Picel Photosensitive Security and the Pi

 \blacksquare Ideally the photoconductive material can be evaporated over the pixel plane

Nygren & Mei arxiv: 1809.10213

- Potential materials: *amorphous selenium, nanoplatelets, organic semiconductors ….*

Simulation of the Q+L sensor in a TPC

Developing a dedicated simulation tool to study the scientific impact of the Q+L sensor on the DUNE experiment

Questions to answer:

■ Can we do light imaging, calorimetry and time discrimination with a Q+L sensor in a DUNE-VD geometry?

- \blacksquare Which physics channels can benefit from this technology? solar and supernova neutrinos, proton decay, …
- Which are the minimum requirements for this sensor? quantum efficiency, sensitive area, granularity…

VD layout most likely for the DUNE PHASE-II modules

Simulation of the Q+L sensor in a TPC

Developing a dedicated simulation tool to study the scientific impact of the Q+L sensor on the DUNE experiment

How?

■ Full Geant4 simulations (or photon libraries) are prohibitively slow (heavy) for DUNE-like geometries and the enormous amount of photons

■ We need to develop fast optical methods that allow the simulation of scintillation light

- *Semi-Analytic Model* (EPJC 81 (2021) 4, 349) to predict the number of photons observed by the light sensors and the arrival times distributions (Isotropic emission + propagation effects)

- Anticorrelation of charge and light taken into account in the simulations

f_{nonlocal} H illation of the Q +i Simulation of the Q+L sensor in a TPC plane center, *dT* , for the SBND-like (top) and DUNE-like (bottom)

Developing a dedicated simulation tool to study the scientific impact of the Q+L sensor on the DUNE experiment $\mathcal{G}(\mathcal{G})$ as shown in different colors refer to different bins as shown in differ panels **of the Q+L sensor on the DUNE experiment**

Propagation effects depend on the detector geometry

 $N_{\gamma} = N_{\Omega} \times GH'(d, \theta, d_T)/cos(\theta),$

which depends on the distance and angle between the set of the set of the set of the set of the se Dedicated calibration for a strategies of the emission point $\frac{a_{1s}}{s_{1s}}$ **from the center of the detector. Note that** $\frac{1}{2}$ DUNE-VD geometry

matarization of the transport time

the borders of the detector and the field cage. Therefore, distributions as a function of the distance

Parameterization of the transport time

Amorphous Selenium (aSe)

Material commonly used in medicine for imaging diagnoses: X-Ray radiography at room temperature

- Properties: Commonly used in X-Ray radiography at room temperature.

- 1 High absorption coefficie ~ 1000 pm anough for 100% absorption 1. High absorption coefficient for 128 nm photons -> Layer of 100 nm enough for 100% absorption
- Favorable transport: 1γ → 1.3 e-h pairs 2. Favorable transport properties
	- -> 1 photon produce 1.3 electron-hole pairs
- 3. Intrinsic gain: avalanche multiplication for high fields
- between 1930 is 1930 is 1930 is 1930 is 1930 is 1930 in 1930 is 1930 in 1930 in 1930 in 1930 is 1930 in 1930 i
Die 1930 is 19 -> ~1000 electrons per photon for 80V/µm

 $\overline{}$ *Q-Pix design choice between 0.3 and 1.0 fC per* per reset time difference. *reset time (1800 - 6000 electrons)* $-e^{-aL}$ Q-Pix technology compatible!! Q-Pix compatible in the <mark>Q-</mark>

FIG. 6. The spectral dependence of the absorption coefficient, α , of amorphous selenium.

Med Phys, 35(5):1978–1987, May 2008

Working Principle of the Q+L sensor

1. Scintillation VUV light is absorbed in the aSe substrate

- -> Photons get to the sensor in ns
- -> Carriers start moving
- -> If E-field strong enough (80V/µm) avalanche multiplication

2. Charge is collected, after drifting, as in regular pixels

 \rightarrow Charge signal gets to the pixels after drifting times of \sim ms

Working Principle of the Q+L sensor

1. Scintillation VUV light is absorbed in the aSe substrate

- -> Photons get to the sensor in ns
- -> Carriers start moving
- -> If E-field strong enough (80V/µm) avalanche multiplication

Main Challenge ??

Reach avalanche multiplication for cryogenic conditions

-> 80V/µm is a really high field

2. Charge is collected, after drifting, as in regular pixels

 \rightarrow Charge signal gets to the pixels after drifting times of \sim ms

Proof of Principle & First Prototype

MAIN GOAL:

Test a-Se coating in a PCB at cryogenic temperature and see light signal

JINST 18 P01029 (2023)

PCB implemented with a commercial interdigitated board with 127 µm trace spacing and 35 µm trace thickness.

- \approx > 99.999% a-Se was deposited by thermal evaporation
- \blacksquare Selenium layer of 1.2 µm

Horizontal Geometry

Experimental SetUp

JINST 18 P01029 (2023)

Custom made vacuum chamber with temperature control by flashing nitrogen

Detail of the SetUp:

UV light source: Xenon Flash Lamp

-> 5 Watt Hamamatsu L11316-11

- Custom HV/readout system
	- -> HV via a DC/DC converter (±750V)
	- -> 2 polarities
	- -> charge read via a decoupling capacitor
- **Low noise charge sensitive amplifier**
- **Electric fields: 2.7 5.2 V/um**

The PCB is mounted on a copper block in contact with a heat exchanger Cooling control: 1 kelvin/minute between 290K - 77K

Results (I): Waveforms at different temperatures

JINST 18 P01029 (2023)

The peak amplitude clearly reduces at the lowest temperatures

Results (I): Some light at cryogenic temperatures

JINST 18 P01029 (2023)

- \blacksquare Integral of the peaks is definitively non-zero
- Pulse shape consistent with a response due to a signal from the flash lamp
- At lowest temperatures, the peak amplitude is higher when collecting electrons
- Future LArTPCs will move to a pixelated solution for charge readout
- This will require new light systems against the traditional ones
- We propose a novel solution: light sensitive pixels (Q+L sensor)
- A reliable simulation tool is in place to evaluate the enhancement of this technology in the physics reach of DUNE
- A potential photosensitive material is the amorphous selenium
- The first prototype has shown the proof-of-principle of the device, \blacksquare robustness at cryogenic conditions and response to VUV light

Back Up

Nygren & Mei arXiv: 1809.10213

Better Energy Resolution

in a LArTPC, especially at low energies *LArIAT, PRD 101 012010 (2020)* **Combining light and charge information has been proven to boos energy resolution**

Q+L improves energy resolution for electros < 40 MeV by:

- 10% for 10 pe/MeV light yield
	- 20% for 20 pe/MeV light yield
- 40% for 100 pe/MeV light yield $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$ improves energy resolution for example $\mathcal{L}^{\mathcal{L}}$. $\mathcal{L}^{\mathcal{L}}$

compared to Q-only reconstruction compared to Q-only reconstruction

Schematic of the setup Villauc of the setup:
Alliance of the setup state of the setup

JINST 18 P01029 (2023)

Preservation of Argon Purity

JINST 18 P01029 (2023)

Time evolution of the peak amplitude

JINST 18 P01029 (2023)

