

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Status and prospects of the DEAP-3600 experiment

OBIERNO

E ESPANA

MINISTERIO

DE CIENCIA

INNOVACIÓN

Vicente Pesudo (CIEMAT/LSC)

on behalf of the DEAP collaboration

LIDINE Madrid, Spain, 20-22 September 2023

Current picture and DEAP-3600 achievements

The DEAP-3600 experiment

Recovering sensitivity

Prospects

Current picture and achievements of DEAP-3600

Current picture and achievements of DEAP-3600

<u>Current picture and achievements of DEAP-3600</u></u>

First DM detector with a target > 1 tonne

Most stringent limits for standard WIMP SI interaction

with a:

non-Xe target

without a TPC

in single phase

Potential path for next generation

Current picture and achievements of DEAP-3600

More exotic DM scenarios already presented @ LIDINE last year by Michela Lai:

- Best limits for xenon-phobic DM Phys. Rev. D 102, 082001 (2020).
- Prospection of unpopulated regions of the parameter space at Planck-scale masses (ultra heavy) Phys. Rev. D, 100, 072009 (2019).

The DEAP-3600 detector: Ar scintillation

- Triplet state slow decay (1.6 µs) dominantly populated by electronic recoils
- No electric field
- Pulse shape allows us to discriminate against gamma and beta backgrounds.
- Position reconstruction and fiducialization allow us to reduce surface and external backgrounds. 0.8 0.4

LIDINE, Madrid, September 2023

(850 mm) 0.2

0.0

-0.2

-0.4

-0.

0.1 0.2 0.3

04 05 (x²+y²)/(850 mm)²

Vicente Pesudo

The DEAP-3600 detector

- Singlet state fast decay (~ns) dominantly populated by nuclear recoils
- Triplet state slow decay (1.6 µs) dominantly populated by electronic recoils
- No electric field
- Pulse shape allows us to discriminate against gamma and beta backgrounds.
- Position reconstruction and fiducialization allow us to reduce surface and external backgrounds. 0.8 0.6 0.4

Check Ludovico's poster!

LIDINE, Madrid, September

(850 mm) 0.2

0.0

-0.2

-0.4

-0.6

0.1 0.2 0.3

04 05 (x²+y²)/(850 mm)²

2023

Vicente Pesudo

0.05

-0.05 -0.1

-0.15

-0.2

0.05

-0.05

-0.1 -0.15

-0.2

-0.25 0

1000

2000

Time [ns]

 T_{eff} (keV_{eff})

Prompt: 0-60ns

Late: 60ns-10µs

3000

50 100 150 200 250 300 350 400 450 500

Number of photoelectrons

4000

5000

PMT Voltage [V]

MT Voltage [V]

0.8 0.7

0.6

0.5

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0.1 0.0

0.8 0.9

06 07

Fprompt

- 3.3 tonne LAr target in ultraclean acrylic vessel (R = 85 cm).
- In-situ vacuum evaporated TPB on inner 10 m² surface.
- Bonded 50-cm-long light guides: distance to PMTs
- 255 PMTs: Hamamatsu R5912 HQE.
 8" 32 % QE 75% coverage.
- Immersed in water tank with PMTs to veto muons (Cherenkov light).
- Located 2 km underground @ SNOLAB: 6000 m.w.e -> 0.03 muon/m2/day

Prospects in a nutshell

 Tackling limiting factors to WIMP sensitivity (hardware upgrades)

2. Finalize refined analyses (better detector model + Profile likelihood + machine learning) and unblind

3. Exploit this science machine and learn for DarkSide-20k, ARGO and beyond

Prospects in a nutshell

 Tackling limiting factors to WIMP sensitivity (hardware upgrades)

2. Finalize refined analyses (better

detector model > Profile likelihood +

machine learning) and unblind

See Shawn's talk after the coffee break!

3. Exploit this science machine and learn for DarkSide-20k, ARGO and beyond

Bkg 1: surface ²¹⁰Po on the neck (above target)

Unfortunate combination of:

- \cdot Surface activity
- \cdot Condensation on neck surf. \uparrow
- Many photons not detected <--
- Topologic pattern mimicking good NR events

PRD, 100 (2019), p 022004

- Vicente Pesudo

Bkg 1: surface ²¹⁰Po on the neck (above target)

Bkg 1: surface ²¹⁰Po on the neck (above target)

DEAP – 3600 Preliminary Simulation Neck $-\alpha$

Vicente Pesudo

Fix 1: WLS modifying the time profile of alpha scintillation

- Neck events will have a different time profile.
- distinct PSD pattern.
- More light collected.
- Out of the ROI.

NIM A 1034 (2022) p 166683

Fix 1: WLS modifying the time profile of alpha scintillation

- Neck events will have a different time profile.
- distinct PSD pattern.
- More light collected.
- Out of the ROI.

NIM A 1034 (2022) p 166683

Hardware upgrades

- Deployment canister + hoist installed.
- Neck replacement in progress
- Neck seal fixed simultaneously

Allowing for full detector fill

Hardware upgrades

- Deployment canister + hoist installed.
- Neck replacement in progress
- Neck seal fixed simultaneously

Allowing for full detector fill

Bkg 2: degraded alphas

from dust particulates in

suspension

DEAP operated with no recirculation or filtration

E lost in the dust itself does not produce photons.

Vicente Pesudo

Fix 2: New recirculation+filtration system to remove dust from target

External cooling also prevents condensation in the neck!

Already @ SNOLAB

Upgrade to be finished early 2024

Ar fill scheduled for spring 2024

Data taking scheduled to resume in

Summer 2024

More results

Recent precision measurement of ³⁹Ar activity in atmospheric Ar: 0.964 ± 0.001_{stat} ± 0.024_{sys} Bq/kg

Eur. Phys. J. C 83, 642 (2023)

More physics in the oven:

ASTROCENT

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens

INFN

OBIERNO DE ESPAÑA

Istituto Nazionale

di Fisica Nucleare

Backup

DEAP – 3600 Preliminary Simulation

DEAP – 3600 Preliminary Simulation

Current picture

Broadly accepted picture... which relies on two unknowns:

- Standard Halo Model
- DM-nucleon coupling which is not essentially bad, but worth keeping an eye on

$$\frac{dR}{dE_R} = \frac{\rho_T}{m_T} \frac{\rho_{\chi}}{m_{\chi}} \varepsilon(E_R) \int_{v_{\min}}^{\infty} v f_{\chi}^{\oplus}(\vec{v}) \frac{d\sigma}{dE_R} d^3 \vec{v}$$

Recoil rate in Ar for

different WIMP distributions

Reference

[60]

[17]

[19]

[17]

[19]

. . .

[19]

. . .

[18]

Type

Debris flow

Debris flow

Stream

IC

Stream

Stream

IC

IC

IC

IC

Stream

IC

Stream

Substructure

G1 Koppelman 1^a

G2 S1^a

G5 Helmi^a

G6 Nyx^a

IC $(\pi, 400 \text{ km/s})$

IC $(\pi, 300 \text{ km/s})$ G3 IC $(\pi, 200 \text{ km/s})^{a}$

IC $(\frac{\pi}{2}, 400 \text{ km/s})$

IC $(\frac{\pi}{2}, 200 \text{ km/s})$

G4 IC $(\frac{\pi}{2}, 300 \text{ km/s})^a$

Koppelman 2

Gaia Sausage (Necib et al.)

Gaia Sausage (O'Hare et al.)

Recoil rate in Ar for

$$\mathcal{L}_{\text{int}} = \sum_{N=n,p} \sum_{i} c_i^{(N)} \mathcal{O}_i \chi^+ \chi^- N^+ N^-$$

 10^{-9}

 10^{-10}

0

50

100

150

 E_R [keV]

LIDINE, Madrid, September 2023

200

250

300

different non-relativistic effective operators

22)' 10^{-4} 01 10^{-5} 03 dR/dE_R [keV⁻¹ kg⁻¹ day⁻¹] $\mathcal{O}_1 = \mathbf{1}_{\chi} \mathbf{1}_N,$ \mathcal{O}_5 $\mathcal{O}_3 = i \vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}_\perp \right),$ 10-6 \mathcal{O}_8 \mathcal{O}_{11} $\mathcal{O}_5 = i \vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}_\perp \right),$ 10^{-7} $egin{aligned} \mathcal{O}_8 &= ec{S}_\chi \cdot ec{v}_\perp, \ \mathcal{O}_{11} &= i ec{S}_\chi \cdot rac{ec{q}}{m_N}, \end{aligned}$ 10-8

Vicente Pesudo

- Mχ = 100 GeV/c^2.
- Isoscalar coupling (cp = cn).
- Arbitrary cross section considered, just for comparison of shapes.

Recoil rate in Ar for

different c_i⁰ / c_i¹ escenarios

Phys. Rev. D 102, 082001 - Published 22 October 2020; Erratum Phys. Rev. D 105, 029901 (2022)'

$$c_i^p \equiv (c_i^0 + c_i^1)/2$$
$$c_i^n \equiv (c_i^0 - c_i^1)/2$$

IS
$$c_i^n = c_i^p$$

 $\mathsf{IV} \quad c_i^n = -c_i^p$

XP $c_i^n / c_i^p = -0.7$

Vicente Pesudo

- [17] C. A. J. O'Hare, N. W. Evans, C. McCabe, G. C. Myeong, and V. Belokurov, Velocity substructure from *Gaia* and direct searches for dark matter, Phys. Rev. D 101, 023006 (2020).
- [18] L. Necib *et al.*, Evidence for a vast prograde stellar stream in the solar vicinity, arXiv:1907.07190.
- [19] L. Necib et al., Chasing accreted structures within Gaia DR2 using deep learning, arXiv:1907.07681.
- [60] L. Necib, M. Lisanti, and V. Belokurov, Inferred evidence for Dark Matter Kinematic Substructure with SDSS–*Gaia*, Astrophys. J. 874, 3 (2019).

	Substructure	Туре	Reference	v_r	v_{θ}	v_{ϕ}	$ \sigma_{rr} $	$ \sigma_{ heta heta} $	$ \sigma_{\phi\phi} $	$\eta_{ m sub}$
					(km/s)			(km/s)		
	Gaia Sausage (Necib et al.)	Debris flow	[60]	$\pm 147^{+7.2}_{-6.4}$	$-2.8^{+1.5}_{-1.6}$	$27.9^{+2.8}_{-2.9}$	$113.6^{+3.1}_{-3.0}$	$65.2^{+1.1}_{-1.2}$	$61.9^{+2.6}_{-2.9}$	0-0.70
	Gaia Sausage (O'Hare et al.)	Debris flow	[17]	-8.2	0.99	25.7	158.9	80.9	61.5	0-0.70
G1	Koppelman 1^{a} IC $(\pi, 400 \text{ km/s})$	Stream IC	[19]	-169 0	-59 0	-375 -400	11–37 35.4	3–16 35.4	6–28 30	0-0.30 0-0.30
G2	S1 ^a Koppelman 2 IC $(\pi, 300 \text{ km/s})$	Stream Stream IC	[17] [19] 	-29.6 213 0	-72.8 161 0	-297.4 -226 -300	82.6 52 35.4	58.5 18 35.4	26.9 29 30	0-0.30 0-0.30 0-0.30
G3	IC $(\pi, 200 \text{ km/s})^{a}$ IC $(\frac{\pi}{2}, 400 \text{ km/s})$	IC IC		0 282.8	0 282.8	200 0	35.4 21.2	35.4 21.2	30 50	0–0.30 0–0.30
G4	IC $(\frac{\pi}{2}, 300 \text{ km/s})^{a}$	IC		212.1	212.1	0	21.2	21.2	50	0-0.30
G5	Helmi ^a IC $(\frac{\pi}{2}, 200 \text{ km/s})$	Stream IC	[19]	29 141.4	-287 141.4	141 0	37–83 21.2	6–21 21.2	4–15 50	0-0.30
G6	Nyx ^a IC (0, 400 km/s) IC (0, 300 km/s) IC (0, 200 km/s)	Stream IC IC IC	[18] 	$ \begin{array}{c} 156.8^{+2.1}_{-2.2} \\ 0 \\ 0 \\ 0 \end{array} $	$-1.4^{+3.1}_{-3.0}$ 0 0	$ \begin{array}{r} 141.0^{+2.5}_{-2.6} \\ -400 \\ -300 \\ -200 \end{array} $	$46.9^{+1.7}_{-1.6}$ 35.4 35.4 35.4	$70.9^{+2.4}_{-2.2}$ 35.4 35.4 35.4	$52.5^{+1.8}_{-1.8}$ 30 30 30	0-0.30 0-0.30 0-0.30 0-0.30

Axion interactions in DEAP-3600 produce EM events

