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Bing AI, show me a spherical acrylic 
LAr dark matter detector in a nest DEAP-3600 and its optical model

Updates to the Noble Element Simulation Tool
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The DEAP-3600 dark matter detector
Overview

3.3 tonnes of LAr 
1.7 m-ID, 5cm-thick Acrylic Vessel (AV)
45 cm-long PMMA light guides (LGs) between AV & PMTs
255 Hamamatsu R5912 HQE low radioactivity PMTs, 8” Ø
250 MS/s readout sampling rate with CAEN V1720 digitizer
6.1±0.4 PE/keV after removing afterpulses
O(1cm) position resolution for bulk LAr scintillation
<<1 ER bkgd w/ Pulse Shape Discrimination

See more
Status and prospects of the DEAP-3600 experiment

– Vicente Pesudo [Wed, 20 Sept, 10:20]
Study of the energy response and position reconstruction with 

22Na source in DEAP-3600 – Ludovico Luzzi, [Poster session]
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Best hits
▶ “Search for dark matter with a 231-day exposure of liquid argon using DEAP-

3600 at SNOLAB”. PRD 100, 022004 (2019)
▶ “First direct detection constraints on Planck-scale mass dark matter with 

multiple-scatter signatures using the DEAP-3600 detector”. PRL 128, 011801 
(2022)

▶ “Constraints on dark matter-nucleon effective couplings in the presence of 
kinematically distinct halo substructures using the DEAP-3600 detector”. PRD 
102, 082001 (2020)

▶ “Precision measurement of the specific activity of 39Ar in atmospheric argon 
with the DEAP-3600 detector”. EPJC 83, 642 (2023)

▶ “Electromagnetic Backgrounds and Potassium-42 Activity in the DEAP-3600 
Dark Matter Detector”. PRD 100, 072009 (2019)

▶ “Pulseshape discrimination against low-energy Ar-39 beta decays in liquid 
argon with 4.5 tonne-years of DEAP-3600 data”.  EPJC 81, 823 (2021)

▶ “The liquid-argon scintillation pulseshape in DEAP-3600”. EPJC 80, 303 (2020)

Classic and 
novel dark 
matter 
searches, 
exploring new 
parameter 
space

Assaying trace 
radioisotopes 
in atmospheric 
argon
Improving LAr 
scintillation 
and PSD 
models
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Optical simulations: 
Key to DEAP analyses

Used for
Background modeling
Signal modeling for

Superheavy DM 
Neutrino signals

Position reconstruction
Multivariate analysis-based 

background discriminants

The goals
Produce primary scintillation
Track 120-500 nm photons 

over several meters of LAr
WL-shift & scatter in TPB
Propagate thru GAr & PMMA
Detect with PMT, incl. noise

C. Ignarra Phys. Proc. 37 (2012): 1217–1222

127 ±8 (FWHM) nm
[T. Heindl et al. EPL 
91 (2010):62002]
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Optics is hard
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Optics is hard

~107 nm
Refractive index at 128 nm sits right near a pole!
Limited data at UV → significant uncertainties
To propagate in LAr, need to know:

Refractive index
Rayleigh scattering length
Group velocity
Absorption length Depends mostly on purity of LAr
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Optics is hardIt’s all connected

Refractive 
index

Rayleigh 
scattering

Group 
velocity

Need coherent treatment of all parameters across full wavelength range
with a fully correlated treatment of uncertainties
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Going down the rabbit marmot hole… 
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Putting the pieces together

a0   = 1.23
aUV = 0.27
aIR  = 0.00085
λUV = 106.6 nm
λIR  ~ 960 nm

Nominal values from E. Grace et al. 
NIM A 867 (2017): 204–208
UV resonance:  Spectral line measured by A. Lane and A. 
Kupperman. Rev Sci Instrum 39 1 (1968):126–127 
IR resonance:  Absorption line measured by S. Arai et al. J. 
Chem. Phys. 68, 4595–4603 (1978) – Some papers have used 
908 nm; it doesn’t seem to make a difference

Sellmeier equation with UV and IR 
resonances covers the wavelength 
range of interest. Can be fit to data

Approach for this analysis is inspired 
by E. Grace’s, with modifications
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Putting the pieces together

Group velocity Phase velocity
vp=c/n

Rayleigh 
scattering 
length

Landau and Lifshitz

Isothermal 
compressability

Density Temperature

~0 [G.M. Seidel et al. NIM A 489, 1 (2002): 189–194]
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To understand κT(T), ρ(T), and n(T), we need to dig into the weeds
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The weeds

Empirical LAr density-temperature relation
E.W. Lemmon et al. "Thermophysical 
Properties of Fluid Systems". NIST 69 
http://webbook.nist.gov/chemistry/fluid/

Global empirical fit of argon equation of state
Agrees with data to within 0.1% - See Eq 3.35 of 
V. Rabinovich et al. “Thermophysical properties of neon, 
argon, and xenon.” Publisher Standards Moscow (1976)
Definition of isothermal compressibility + empirical 
EoS → κT with C. Kittel “Intro. to Solid State Physics”

Clausius–Mossotti relation setting ε=n2

From differentiating Clausius-Mossotti

Inverse Rayleigh scattering length
L. Landau, E. Lifshitz, “Electrodynamics of Continuous 
Media”, 2nd Edition, Pergamon, Oxford, 1984.
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Refractive index T-dependence

[A. Sinnock and B. Smith. 
“Refractive Indices of the 
Condensed Inert Gases”. Phys. 
Rev. 181, 3 (1969): 1297–1307]

Fitting Sellmeier coefficients, 
consistent with A being constant
Model agrees with temperature 
dependence in Sinnock & Smith
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So what is n(λ)?

Sinnock & Smith 
measurements at 90 K

Babicz et al. (2019) 
measurement 
(unspecified T)

Fitting S&S only, error 
band from fit parameter 
uncertainties – Median 
is 1σ from Babicz et al.

Results from fitting two-
resonance Sellmeier equation 
to published measurements

Babicz et al.

[M. Babicz et al NIMA 
936 (2019): 178-179]
[M. Babicz et al JINST 
15 (2020): P09009]

Measured 
vg=13.40±0.15 cm/ns 
from passing muons
2020 paper added σsyst 
analysis due to pulse 
finding and visible light 
contaminationVarying n(127 nm), fitting, and re-calculating vg → n(127 nm)=1.363±0.003
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So what is n(λ,T)?

Sinnock & Smith 
measurements at 90 K

Babicz et al. (2019) 
measurement 
(unspecified T)

Fitting S&S only, error 
band from fit parameter 
uncertainties – Median 
is 1σ from Babicz et al.

Results from fitting two-
resonance Sellmeier equation 
to published measurements

Babicz et al.

[M. Babicz et al NIMA 
936 (2019): 178-179]
[M. Babicz et al JINST 
15 (2020): P09009]

Measured 
vg=13.40±0.15 cm/ns 
from passing muons
2020 paper added σsyst 
analysis due to pulse 
finding and visible light 
contaminationActual T not precisely known: Vary 88–90 K → n(127 nm)=1.364±0.005
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Going DEAPGoing DEAP
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LAr optical parameters in DEAP
Fit uncertainties:
a0, aIR, aUV 

LAr temperature: 
84–90 K

Treatment: Use fit 
covariance matrix to 
draw uncertainty 
bands for n(λ), vg(λ), 
and LRayleigh(λ) → σFit|T

Treatment: 
σT = (dn/dT)δT
dn/dT from derivative 
of Clausius-Mossott 
eqn., using empirical 
ρ(T). Use Δn(λ) to 
get Δvg(λ) & LRayleigh(λ)

Total uncertainty: 
σ2

tot = σ2
Fit|T  + σ2

T
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LAr optical parameters in DEAP
LRayleigh(127) = 85.6±3.3 cm
LRayleigh(128) = 93.1±3.5 cm

vg(127) = 13.2±0.2 cm/ns
vg(128) = 13.7±0.2 cm/ns
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Scintillation pulse shape
DEAP Collaboration. “The liquid-argon scintillation pulseshape in DEAP-3600” Eur. Phys. J. C 80, 303 (2020)
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Excellent data/simulation agreement

DEAP Collaboration. Search for dark matter with a 231-day exposure of 
liquid argon using DEAP-3600 at SNOLAB.” PRD 100, 022004 (2019)

Compare 
bulk 
scintillation 
data and 
simulation

Sina Safarabadi. PhD thesis, University of Alberta (2023)

DEAP model
Data

DEAP model also uses:
TPB prompt time: 2.2 ns
TPB scattering length: 2.25 μm

Time since start of pulse

39Ar Average waveformDiff. in reconstructed z for 2 algorithms
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Bing AI, draw a picture of a 
nest made of liquid argon and 
liquid xenon

Brief NEST update

NEST: Noble Element Simulation Technique:
A cross-collaboration team developing tools to 
model signals in Xe and Ar detectors
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Reproducing & foretelling detector response
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NEST, g1 = 0.07 phd/photon

Effext = 50%
Effext = 100%

NEST, g1 = 0.12
NEST, g1 = 0.17

LUX Run03, g1 = 0.117, Effext = 54%
LUX Run04, g1 0.1 , Effext = 81%
ZEPLIN-III FSR, g1 = 0.0714, Effext = 59%
PandaX-I, g1 = 0.0868, Effext = 80%
PandaX-II, g1 = 0.0972, Effext = 48%
XENON10, g1 = 0.073, Effext = 96%

XENON100, g1 0.04, Effext = 84 - 96%
XENON100, g1 0.07, Effext = 84 - 96%
XENON1T, g1 = 0.116, Effext = 96%
LZ SR1, g1 = 0.114, Effext = 81%
XENONnT SR0, g1 = 0.125, Effext = 53%
Analytic App. for 50% NR Acceptance, log10(S2c) vs. S1c
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Effext = 75%

NEST v2.3.10, without noise, g1=0.12 phd/photon
NEST v2.3.11, without noise
NEST v2.3.11, with 4% S1 & 4% S2 noise

Predicted by NEST 
before 
experimental 
measurements!

Electronic recoil leakage (ER/NR discrimination) using S2/S1 in LXe TPCs

NEST Collaboration. “A Review of NEST Models, and Their Application to Improvement of Particle
Identification in Liquid Xenon Experiments”. arXiv:2211.10726 (2023): Submitted to PRD. Plot by Min Zhong
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Reproduces LAr data across wide E range

NEST Collaboration. “A Review of Basic Energy Reconstruction Techniques in 
Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using 
NEST”. Instruments 5(1), 13 (2021)
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END
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