Status of the LUX-ZEPLIN (LZ) **Experiment's Search** for Dark Matter

Scott Kravitz On behalf of the LZ Collaboration

> LIDINE 2023, Madrid, Spain September 20, 2023

LZ (LUX-ZEPLIN) Collaboration, 37 Institutions

- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- US UK Portugal Korea Australia

250 scientists, engineers, and technical staff

Science and Technology Facilities Council

Thanks to our sponsors and participating institutions!

The LUX-ZEPLIN Experiment (LZ)

Principle of operation

- Raw data: waveform per PMT
- Typical reconstructed info (for each scatter):
 - **S1** (prompt scintillation) total area
 - \circ **S2** (ionization signal) total area
 - **X, Y position** (from S2 PMT hit pattern)
 - \circ Z (from Δt between S1 and S2)
- Weighted sum of S1, S2 gives **E**
- S1/S2 ratio implies **recoil type**
 - Dominant backgrounds are electron recoils (**ER**)
 - WIMP interactions are nuclear recoils (NR)

Early LZ Operations

- First science run started late 2021
- First results summer 2022 with ~60 live days
- Past year: extensive calibrations, ongoing longer data-taking run in discovery mode
- Key detector stats:
 - **7 tonnes** active Xe mass
 - TPC dimensions: **1.5 m tall x 1.5 m dia.**
 - **~500 PMTs** in the TPC
 - PTFE walls ~97% VUV reflectivity
 - $\circ \qquad 4 \, \text{woven electrode grids}$
- First science run parameters:
 - Temperature: **174.1** K
 - Gas Pressure: **1.79 bara**
 - Drift Field: 193 V/cm
 - GXe Extraction Field: 7.3 kV/cm (~80% electron extraction)
 - Electron lifetime: >5 ms
 (82-88% e- survival at max drift)

LZ electrode grid design: NIM A, 165955 (2022)

Background reduction - a monumental effort

- Key challenge: reducing backgrounds enough to observe O(1-10) DM events in years of data
- Mitigation techniques in construction and operation:
 - \circ $\,$ Rock overburden muons reduced by ~10^{6}
 - Radiopure detector materials all materials assayed to reduce γ and (α,n) rates (HPGe, ICPMS, neutron activation)
 - TPC assembled in Rn-reduced cleanroom
 - Xe distilled off-site for Kr removal (<300 ppq)
 - In-line Rn removal with charcoal chromatography

Radioassay and cleanliness: EPJC, Vol 80: 1044 (2020)

Ultrapure titanium: Astropart. Phys. 96, 1 2017

HPGe counters at SURF

Kr removal system at SLAC

Background reduction – analysis techniques

 40^{2}

- Only **1 in 10⁹** events are of interest: extreme needle in a haystack problem!
- Fiducialization xenon self-shields from external y
- Highly efficient veto system:
 - 89% n rejection from OD + skin (AmLi calibration source) Ο
 - 78% y rejection from skin (¹²⁷Xe events) Ο

Total Collected Particles	100%	5 Billion
Single Site Interactions	5%	250 Million
Low Energy Transfer	0.4%	1 Million
Detectable Charge Level	10%	100,000
Use Inner Volume Only	5%	5,000
Not Observed in Gadolinium	20%	1,000
Low Charge/Light Ratio	0.5%	5

Scott Kravitz, University of Texas at Austin

Calibration and Simulations

- Principle calibration sources:
 - **CH**₃**T** (tritium) beta source, ER, dispersed (<18.6 keV)
 - **DD** neutron source, NR, external (2.45 MeV neutrons)
- Many others, such as dispersed ^{83m}Kr and ^{131m}Xe (position, time-dependent signal corrections)
- Calibration data used to tune NEST*-based simulation parameters:
 - \circ Light gain g1: 0.114 ± 0.002 phd/photon
 - Charge gain **g2: 47.1** ± 1.1 phd/electron
 - Single electron size: **58.5 phd**
- 99.9% rejection of ERs below the NR median
- See Jack Bargemann's talk on light and charge yields of Xe electron captures, Thurs 2 pm
 - * https://nest.physics.ucdavis.edu/, v2.3.7

LZ simulations: Astropart. Phys. 116 (2020) 102391

Background model

Total expected **ER** counts in ROI in first run: 276 + [0, 291] from ³⁷Ar

Data from first science run

- Data are fit to simulated models for each background and signal in the 2D space of {log₁₀(S2c), S1c}
- Statistical inference done using a profile likelihood ratio (PLR) analysis in this space
- Best fit finds no WIMP signal
- Events within 2σ NR contour have pie charts indicating best fit contributions from each component

Dark matter limits

Phys. Rev. Lett. 131, 041002

Dark matter limits – spin dependent Phys. Rev. Lett. 131, 041002

• Curves:

- Solid black: observed limit after power constraint
- Gray band: theoretical uncertainty from differing estimates of xenon nuclear structure factors

New physics searches in low energy ERs

- New analysis of ER interactions
 - Same data as WIMP search
 - Same cuts
 - Same background simulations
- Time-dependence added to fit (³⁷Ar + ¹²⁷Xe; both half-lives ~35 days)

Signal strengths scaled for ease of viewing on same plot

Solar axions

- Production within Sun
- Interaction in Xe via axio-electric effect

• 90% C.L. on
$$g_{ae} = 2.35 \times 10^{-12}$$

 Strongest limit: cooling rate measurements of red giant stars

Neutrino interactions

- A non-zero neutrino magnetic moment or effective millicharge would increase the rate of solar neutrino ER interactions
- 90% C.L. μ_ν = 1.36x10⁻¹¹ μ_B
- Strongest limits: cooling rates of white dwarf stars, precision photometry of red giants in globular clusters
- 90% C.L. $\delta_Q = 2.24 \times 10^{-13} e_0$ World-leading!

Mono-Energetic Signals: ALPs + Hidden Photons

- Axion-Like Particles (ALPs):
 - Gauge pseudo-scalar boson from BSM global symmetry breaking

- Hidden (dark) Photons (HPs):
 - Gauge boson of new 'dark' U(1) symmetry

• Both signals manifest as absorption by a Xe electron as in photoelectric effect, but with photon energy replaced with ALP/HP mass

Migdal effect: spin-independent WIMPs

- Can also search for WIMPs in ER channel:
 - Migdal effect* leads to electron excitation and ionization after nuclear recoil
 - Sub-dominant to pure NR rate except near threshold (1.6 keV for ER vs 5.3 keV for NR)

*M. Ibe et al., <u>JHEP03,194 (2018)</u>

Migdal effect: spin-dependent WIMPs

SDn limit world-leading from 1.1 to 3 GeV!

WIMP-Nucleon Effective Field Theory Couplings

- Consider a broader class of theories than SD or SI WIMPs: all Hermitian, Galilean invariant operators w/ DM spin <= 1
- Total of 15 operators formed by all allowed combinations of spin of nucleon/WIMP, momentum transfer, and WIMP perpendicular velocity

Scott Kravitz, University of Texas at Austin

momentum transfer

perp. to \vec{q}

WIMP velocity

 $\mathcal{O}_1 = 1$

 $\mathcal{O}_2 = (v^\perp)^2$

 $\mathcal{O}_3 = i\vec{S}_N \cdot (\vec{q} \times \vec{v}^{\perp})$

Extending to higher energies

- Principal consequence: energy spectra extend to higher energy
- Models tuned to cover new region using calibration data
- New backgrounds included in model, notably multiple scatter, single ionization (MSSI)
- MSSI low rate becomes negligible after removal with machine learning

EFT operator limits

- mx = 1000 GeV
- Blue bars: ±2σ expected sensitivity

Xenon100: <u>Phys. Rev. D 96, 042004</u> LUX: <u>Phys. Rev. D 103, 122005</u> PandaX-II: <u>Physics Letters B 792C</u>

Next up for LZ

- Further exciting analyses, e.g.:
 - Ultraheavy / multiply interacting dark matter
 - Neutrino studies: ⁸B CEvNS, supernova v
 - Neutrinoless double beta decay / electron capture
 - DM searches with S2-only channel

- Lots more dark matter searching to do!
 - Anticipate ~15x more data in the next few years
 - Important theory benchmarks being probed now
 - More are just beyond LZ's reach:
 - ~10x to neutrino fog... what then?
 - Long-term limitations:
 exposure, dominant radon background

Ellis et al., <u>EPJC Vol. 83: 246 (2023)</u>

Beyond LZ: CrystaLiZe

- Post-LZ ops proposal: freeze LZ Radon emanated from surfaces now excluded from solid bulk
- In **CrystaLiZe**, Rn in bulk target from LXe phase would be fixed, decay away in O(100) days
- Reduction in Rn chain daughters of nearly 100x

same LZ emanation and dust assumptions

CrystaLiZe status

- Dual phase crystal/gas TPC operation established at LBNL (700 g Xe)
 - Detectable signal channels (S1, S2) similar to LXe
 - **Faster** electron drift in crystal by **~1.6-2x**
 - Radon reduction as expected
- Is it scalable to LZ at 7000 kg (10⁴x bigger)?
 UT Austin group working to establish this ask me for details!
- Possible combination w/ HydroX idea: H-doping of LZ for low-mass and spin-dependent WIMP search enhancement

XLZD

- XLZD consortium: XENON, LZ, and Darwin experiments join forces https://xlzd.org/
- Plan for a ~40-80 tonne global xenon experiment
- WIMP search to neutrino fog, neutrinoless double beta decay, solar neutrino physics, and more
- See more details on the website and in the whitepaper: <u>J. Phys. G50, 013001 (2023)</u>

WIMP mass [GeV/c²]

Thank you!

Thanks to our sponsors and 37 participating institutions!

U.S. Department of Energy Office of Science Science and Technology Facilities Council

Fundação para a Ciência e a Tecnologia

FC

b Institute for Basic Science

Scott Kravitz, University of Texas at Austin

Backups

Electron lifetime

- Drifting electrons can become trapped on impurities like O₂
- Purity is quantified by electron lifetime: mean time a free electron will live before becoming trapped
- LZ requirement: > 1ms (i.e. the maximum drift time from cathode to liquid surface)
- During SR1, e-lifetime consistently greater than 5ms

Calibration sources

Comprehensive set of dispersed and external radioactive sources to calibrate detector response of TPC, skin, and OD

- ^{83m}Kr: monoenergetic ERs, 32.1 keV and 9.4 keV
- ^{131m}Xe: monoenergetic ER, 164 keV
- CH₃T (tritium): continuum betas, 18.6 keV
- Activation lines

- Deuterium-deuterium (DD): triggered 2.45 MeV neutrons
- AmLi: continuum neutrons, isotropic
- Alphas
- And more (²²⁰Rn, YBe, ²⁵²Cf, ²²Na, ²²⁸Th, etc)

Background model - fitting at higher energy

LZ backgrounds: <u>Phys. Rev. D 108</u>, 012010

Radon chain positions

LZ backgrounds: Phys. Rev. D 108, 012010

Accidental coincidences

Shape from stitching together isolated S1s and S2s from real data

Rate from a model informed by UDT events

LZ backgrounds: <u>Phys. Rev. D 108</u>, 012010

Data selection

- Cuts are applied to remove:
 - Periods of high rate
 - Pulses with unusual shapes
 - Poorly reconstructed events
- S1 pulse efficiency dominated by 3-fold PMT coincidence requirement
- Efficiencies measured using various calibration sources and visual inspection of many events
- NR threshold (50% efficiency) measured to be at **5.3 keV**
- After cuts, first science run has:
 - 335 events observed
 - **60.3 ± 1.2 days** of livetime
 - 5.5 ± 0.2 tonnes fiducial volume

Final SR1 Data

- Projecting onto electronic-equivalent reconstructed energy ("keVee")
- Data histogram shown as black points
- Best fit with no WIMP signal yields p-value of 0.96
- Expected range of statistical fluctuations for best-fit: light-blue boxes

Source	Expected Events	Fit Result
β decays + Det ER	215 ± 36	222 ± 16
νER	27.1 ± 1.6	27.2 ± 1.6
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8
¹²⁴ Xe	5.0 ± 1.4	5.2 ± 1.4
¹³⁶ Xe	15.1 ± 2.4	15.2 ± 2.4
⁸ B CE _V NS	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
³⁷ Ar	[0, 288]	$52.5^{+9.6}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30 \text{ GeV}/c^2 \text{ WIMP}$		$0.0^{+0.6}$
Total	•••	333 ± 17

SR1 data - fiducial volume and vetos

Events passing all cuts

Events outside of fiducial volume
 Events vetoed by skin (mostly ¹²⁷Xe)
 Events vetoed by OD

ER threshold

- From low energy ER paper
- 50% efficiency at 1.56 keV

Solar Axions

- Axions are bosons that result from spontaneous symmetry breaking of U(1) chiral symmetry as a result of the Peccei-Quinn mechanism to solve strong CP problem in QCD
- Axions in sun can be produced via
 - Axion-electron coupling: Atomic, Bremsstrahlung and Compton (ABC)
 - Axion-nucleon coupling: ⁵⁷Fe de-excitation
 - Axion-photon coupling: Primakoff effect
- These above methods produce a predicted solar axion flux which would then be axio-electrically absorbed by Xe electrons
 - We consider ABC process \rightarrow constrain g_{ae}
 - Rate scales with g_{ae}^{4}
- Axio-electric recoil spectra uses solar flux from <u>Redondo (2013)</u>

Neutrino Magnetic Moment and Effective Millicharge

- Impact of neutrino containing a non-zero magnetic moment (MM) or effective millicharge (mQ) are calculated as enhancements to the Solar ER rate
 - Non-tree level interaction and could imply some BSM physics couplings and/or Majorana nature of neutrino
- Calculated by Hsieh et al (2019) using RRPA method arXiv:1903.06085
- Rate of neutrino magnetic moment and neutrino millicharge scale as μ_v^2 and q_v^2 , respectively
 - Neutrino MM scales like 1/E
 - Neutrino mQ scales like 1/E²

Mono-Energetic Signals

- Axion-Like Particles (ALPs)
 - \circ Gauge pseudo-scalar boson that results from spontaneous symmetry breaking of some BSM global symmetry at a scale $\rm f_{ALP}$.
 - \circ $\:$ Not linked to strong CP problem and Peccei-Quinn mechanism as QCD axions e.g. $m_{ALP}f_{ALP}$ parameter space is much wider
- Hidden (dark) Photons (HPs)
 - Gauge vector boson of some 'dark' U(1) symmetry, e.g. dark EM, that pops up in some supersymmetric models
- Signal Response
 - Both are absorbed by bound electrons of xenon in process analogous to photoelectric effect, but with photon energy replaced with ALP/HP mass.
 - ALP rate scales with g_{ae}^{2} (~1/f_a²); HP rate scales with α'/α (often called κ^{2})
 - Rates follow prescription in <u>Pospelov et al</u>

$$R_{\rm ALP} \simeq rac{1.2 imes 10^{19}}{A} g_{\rm Ae}^2 \sigma_{
m PE} \, m_{
m ALP}$$

$$R_{\rm HP} \simeq \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \frac{\sigma_{\rm PE}}{m_{\rm HP}}$$

Migdal Effect

- Electronic excitation/ionization in response to DM interacting with atomic nucleus
- Calculated according to <u>lbe et al</u>.
 - Restricted to n = 3 & 4 electron shells

Migdal Effect

Calibrations out to higher energies

- Flat ER and NR response regions (medians, 90-10 CLs) compared to:
 - \circ ³H (blue)
 - D-D (orange)
 - o ²²⁰Rn/²¹²Pb (green)
- Shaded pink is NR uncertainty

The neutrino fog

CrystaLiZe: Radon tagging

- In crystal, radon decay daughters stay at same (x,y,z) as parent
- Allows for tagging/veto
- Limited in liquid due to convection