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Neural Networks and type of problems

A Neural Networks (NN) is able to
learn patterns on labeled data
(Montecarlo) and guess on unlabelled
and previously unseen data (supervised
learning).

Position reconstruction is a regression
problem in Machine Learning (ML) in
which continuous labels (coordinates)
are predicted.

A second category of problems involves
classification, in which categorical
labels are predicted: such as
background signal classification and
particle identification.

@ In non-supervised
learning
unlabelled data
are clustered by
similarity.
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Architectures, Discussion, pro-cons

@ NN Architectures: trainable parameters, pattern complexity to learn,
time processing (trigger), etc.

o Correlation exploitation: temporal and/or spatial. Richer/more
complex signals.
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DL can help on ...

@ As far as liquid noble gases TPCs become larger and larger, drift time
takes longer, probability of pile-up increases.

@ Therefore, to address particle identification (background rejection),
accurate position reconstruction and multiplicity labelling NN /DL
become mandatory.

@ Detector are complex machines. Fail and close to fail regimes can be
predicted (DL).
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e Convolutional Neural Networks (CNN) are able to exploit spatial
(topological) correlation on signal, both in 2D images, and 3D (true
or fake) colour.

@ CNN can also handle layers of spatial images (2D) arrange in a 3D
tensor of arbitrary third dimension (multiple time steps of a 2D
image, sequence of images).



Time series
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Temporal correlation

Recurrent Neural Networks T
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@ Time series (pulse shape) can be used as discriminator by Recurrent
Neural Networks (RNN): particle identification, but also as anomaly
detection (close to fail prediction for subsystem at least).

@ More complex architecture than CNN, thus more intensive
computation and it takes longer.



Spatial and
Temporal
Correlations

Sequence of Images
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Recurrent Neural Networks

Convolutional Neural
Networks

@ Much more complex
architecture than CNN
and RNN individually,
thus it takes much
longer.

o Large amount of data
stored per event
(computational
resources).

o Data layout becomes

more and more relevant
for final performance.



Al
0000000

Position reconstruction and pile-up

@ In case we are able to reconstruct
the z (possibly x,y) coordinate from | ﬂ
the S1 light pattern, we can ML_»,,L..J
unambiguously associate S1 and S2 /T\ N T

if the events are spatially separated.

@ In this case, we have a certain time
window in which the S2
corresponding to a specific S1 is

expected.

@ This could considerably relax the @ Accurate S1-based position
maximum event rate we can handle reconstruction could
and the requierements on the event mitigate the problem
rate/material contamination. associated to pile-up.

9/17



OOOOOOO

eXplainable Artificial Intelligence (XAl)
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NN are not black boxes, unboxing

e XAl algorithm depends on input shape (1D, 2D) and NN architecture.

o It allows discovering salient features and bias in the dataset.
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@ Improvements of the performance by deeper architecture, larger
dataset (more statistics), but also data representation (and the
architecture).
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XAl, MLP:Z true pred 95.9 98.0
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XAl, MLP:Z true pred 140.7 100.6
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Conclusion
°

Conclusion

Messages

@ DL is a powerful tool, please use it smartly for rare event research
and underground physics.

@ DL is also in the frontier of knowledge, please don't use 20 years old
algorithms (except if you need ultrafast algorithm for the trigger).

o XAl generates virtuous cycles, answering why NN /DL model produces
a particular results, and arising new questions about how to improve
(looking at error patterns).

@ Don't scratch surface of ML, dig/dive in DL, and ask to experts.
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