

X-ARAPUCA efficiency for visible light

Gabriel Botogoske on behalf of LabLeptons group

UNICAMP

LIDINE 2023 Light Detection In Noble Elements 20-22 Sep 2023

Madrid

ARAPUCA & X-ARAPUCA

Dichroic filter cutoff **450nm NO** wavelength shifter **coating** on the filter **Light guide** with emission on the **green** wavelength

Motivation

SBN - Short Baseline Neutrino Program at Fermilab.

Consisting of 3 experiments **(SBND - MicroBooNE - ICARUS)** that use the LArTPC technique and are located a short distance from the particle beam generated in the BNB (Booster Neutrino Beam) at Fermilab.

3

Short Baseline Neutrino Detector

- LAr Time Projection Chamber
 - LAr at 87K
 - 112-ton (4 x 4 x 5)m of active volume (2 drift volumes)
 - Cathode Plane Assembles (CPA) central (+TPB)
 - Anode Plane Assembles (APA) at the ends
 - APA has 3 wire planes with 3mm distance between each plane and orientation: vertical (y) and ±60° (U&V)
 - The photon detection system is composed of: PMTs and X-ARAPUCAs
 - E= 500V/cm

SBND - PDS \implies

120 PMTs
192 X-ARAPUCAs
96 VUV
96 VIS

Presented by Rodrigo Alvarez Garrote

80

SBND

Efficiency for ARAPUCA VUV

From previous work :

Glas to Power	2.9 +- 0.1 %
ELJEN	1.8 +- 0.1%
	2.2 +- 0.5%

https://arxiv.org/abs/2104.07548

Efficiency for ARAPUCA VUV

From previous work :

Glas to Power	2.9 +- 0.1 %
ELJEN	1.8 +- 0.1%
	2.2 +- 0.5%

https://arxiv.org/abs/2104.07548

Setup

- Single cell X-ARAPUCA Cryostat with 6.0 LAr Vacuum < 1x10⁻⁶ mbar

- BLUE LED
- APSAIA amplifier (low gain)
- DT1730 digitizer SiPM HS (Hamamatsu 6X6mm²)

Alpha source

Detection Efficiency

Experimental data

MC - Vinicius Andreossi

X10 PE

Detection Efficiency

TPB efficiency: 0.7 https://www.sciencedirect.com/science/

article/pii/S0168900211013271

Conclusion

- In SBND we will detect direct LAr scintillation VUV photons and TPB shifted ones coming from the cathode
- The collection efficiency of VUV SBND X-ARAPUCA module was already measured by different groups, in different laboratories. (<u>https://arxiv.org/abs/2106.04505</u> and <u>https://arxiv.org/abs/2104.07548</u>)
- It ranges from 1.8 to 2.9 %, depending of the sipms and light guide used
- The collection efficiency of a single cell X-ARAPUCA for visible light was measured for the first time at LabLeptons Laboratory in a small cryostat.
- The collection efficiency measured was: 3.2 ± 0.03%
- The measure of VIS-X-ARAPUCA, SBND module (double cell) is ongoing

Thank you !!!!!

Acknowledgment :

