

DEAP-3600

STUDY OF THE ENERGY RESPONSE AND POSITION RECONSTRUCTION WITH ²²Na SOURCE

LUDOVICO LUZZI ON BEHALF OF DEAP COLLABORATION

OVERVIEW OF THE DEAP-3600 EXPERIMENT

- DEAP-3600 is a single-phase liquid argon (LAr) dark matter detector
- Located 2 km underground at SNOLAB (Sudbury, Canada)
- 3.3 tons of LAr contained in a spherical acrylic vessel 851 mm in radius
- Active volume is viewed by 255 low radioactivity Photomultiplier Tubes (PMTs)
- PMTs are coupled to light guides which transport scintillation photons to the PMTs
- TPB coating on the acrylic converts the 128 nm scintillation light produced by the LAr to visible wavelengths
- The volume between the light guides is filled with alternating layers of insulating materials which provide passive shielding of neutrons and thermal insulation
 The entire assembly is contained in a stainless-steel sphere submerged in a 7.8 m high by 7.8 m diameter wide water tank with 48 PMTs mounted on its outer surface constituting a Cherenkov muon veto (MV)

ENERGY RESPONSE

- Bayesian estimator of the number of photoelectrons (PE) observed from scintillation light
- The shape of the energy spectrum is dependent on the tagging by the PMTs
- 3 different tagging configurations:
 - trigger in the detector and in both tagging PMTs, that corresponds to the tightest tagging condition
 - o trigger in the detector and just in one

Light Guide

3300 kg of

LAr

Steel Shell

²²Na CALIBRATION SOURCE

- ²²Na decays to an excited state of ²²Ne via a β+ decay (90.6 %) or electron capture (9.4 %)
- Upon transition to the ground state, the ²²Ne emits a γ with an energy of 1.275 MeV
- The positron from the ²²Na β + decay annihilates with an electron from the surrounding materials, emitting two back-to-back γ s with energies of 511 keV
- $\frac{\gamma}{1274.5 \text{ keV}}$ The emission of the three γ particles following the ²²Na decay is "simultaneous", providing a very suitable tagging algorithm for a ²²Na calibration source in DEAP-3600

shell

GOAL OF THIS WORK

Exploit the excellent tagging properties of the ²²Na source to improve the event reconstruction and the overall performances of the experiment

- tagging PMT and this leads to the clearly visible peak of 511 keV
- o trigger only in the detector, when we are able to see the ³⁹Ar beta decay on top of the ²²Na spectrum

ENERGY CALIBRATION

#PE

- Events with one tag considered •
- Gaussian fit has been applied to the 511 keV and the full energy peak to measure their energies in PEs
- Then the energy calibration has been
 performed dividing the results by the energies of those peaks in keV
- The measurement has been repeated
 for all the 9 positions around the steel shell, obtaining an average value of
 6.15 ± 0.02 PE/keV

DEAP

-MC

– Data –

y (mm)

DEAP

PRELIMINARY Position 1 PRELIMINARY Position 1 President of the second second

Position	Average LY (PE/keV)	Position	Average LY (PE/keV)	Position	Average LY (PE/keV)
1	6.13 ± 0.02	4	6.16 ± 0.02	7	6.17 ± 0.02
2	6.13 ± 0.03	5	6.20 ± 0.03	8	6.11 ± 0.02
3	6.19 ± 0.02	6	6.19 ± 0.01	9	6.10 ± 0.02

POSITION RECONSTRUCTION

- The PEs patterns of the PMTs are used as the basis for the position reconstruction
- PMTs located closer to the source should get more photon hits and detect high number of PEs: the vertex resolution gets better as you get closer to the detector's edge
 The PMT charge pattern of each event is read out and compared to a look-up database from high statistics optical simulations using a minimization procedure

SOURCE DESCRIPTION

- A stainless-steel cylinder contains the active element
- Source encapsulated with a copper foil and a copper closure
- On either side there are two LYSO crystals, scintillators used to tag the γs from the ²²Na decay
- The crystals are attached to PMTs which record the scintillation light emitted from the LYSOs
- To avoid contaminating the LAr target material, the source is only deployed around the outer steel shell in a calibration tube
- Along that cable, 9 pre-set positions were marked

TAGGING ALGORITHM

- The **tagging** is based on the timing between the calibrated event time and the time the pulse was detected in the calibration PMTs
- The 22 Na pre-processor runs on the \bullet_1

- The best match is given back as the fitted event position by the fitter
- Position reconstruction have been applied also on MC simulations of the source
- Good agreement between data and MC
- Discrepancy for high values of R² due to the selection of the fiducial volume which has an impact in the detector resolution and in the position reconstruction

PRELIMINARY

-400

200

300

PRELIMINARY

100

-MC

–Data

200

500

400

Event Time – Tag Pulse Time [ns]

first 10 sub runs of a processed run Looking at the calibration PMT • pulses, the algorithm detects and marks an appropriate tag window, used for the remaining sub runs in the run

 For runs in which the algorithm
 fails (due to high baseline, pile up or other factors) the processor uses

default values from the tightest bound of 7 runs analysed

CONCLUSIONS

²²Na source has excellent tagging properties that have been exploited to study the performances of the DEAP-3600 detector:

- We can unambiguously tag events from the 22 Na identifying the γ s from the source
- We performed an energy calibration of the detector, finding an average of 6.15(2) PE/keV
- We used the events from the ²²Na source to test the position reconstruction algorithm; the comparison of it with MC allows us to improve our detector
- Currently within the WIMP-search PE region, near the 630 mm radius of the fiducial volume, events are typically reconstructed within 30–45 mm

BIBLIOGRAPHY:

- Stefanie Langrock and on behalf of the DEAP-3600 collaboration 2020 J. Phys.: Conf. Ser. 1342 012071
- Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB, R. Ajaj *et al.* (DEAP Collaboration), Phys. Rev. D 100, 022004 – Published 24 July 2019